COMPUTER SCIENCE TRIPOS Part II - 2017 - Paper 8

10 Quantum Computing (AD)

Recall that the four states of the Bell basis are:

$$
\begin{array}{ll}
\beta_{00}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) & \beta_{01}=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\beta_{10}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) & \beta_{11}=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{array}
$$

(a) Give, in matrix form, a unitary operator B such that for any computational basis state $|i j\rangle(i, j \in\{0,1\})$, we have $B|i j\rangle=\left|\beta_{i j}\right\rangle$.
(b) For the operator B defined in part (a), give a description of the six states: $B^{2}|00\rangle, B^{2}|01\rangle, B^{3}|01\rangle, B^{3}|10\rangle, B^{4}|11\rangle, B^{4}|10\rangle$.
(c) Consider a quantum finite automaton in a two letter alphabet $\{a, b\}$. The automaton has four states: $|0\rangle,|1\rangle,|2\rangle,|3\rangle$. The transitions on input a are given by the rule:

$$
M_{a}:|i\rangle \mapsto|(i+1) \bmod 4\rangle
$$

and the transition matrix for input b is given by the operator B from part (a).
For each of the strings w below, give the probability that the automaton, when started in state $|0\rangle$, after reading w is measured to be in state $|0\rangle$.
(i) $a a a$
(ii) a^{8}
(iii) $a^{3} b^{4}$
(iv) ababab
(d) For the automaton defined in part (c), give a complete description of all strings w such that when the automaton is started in state $|0\rangle$ it reaches state $|0\rangle$ with probability 1 after reading w.

