COMPUTER SCIENCE TRIPOS Part II – 2017 – Paper 7

3 Machine Learning and Bayesian Inference (SBH)

- (a) For random variables (RVs) A_1 , A_2 and B, define what it means for A_1 to be conditionally independent of A_2 given B, written $A_1 \perp A_2 | B$. [1 mark]
- (b) Given mutually disjoint sets X_1 , X_2 and Y of random variables from some Bayesian network, define what it means to say that a path from $x_1 \in X_1$ to $x_2 \in X_2$ is *blocked* by Y. [5 marks]
- (c) Given mutually disjoint sets X_1 , X_2 and Y of random variables from some Bayesian network, define what it means for X_1 and X_2 to be *d*-separated by Y. What does this tell you about the probability distribution represented by the Bayesian network? [3 marks]
- (d) Consider the following Bayesian network.

In each of the following cases, establish whether or not $X_1 \perp X_2 | Y$:

(i) $X_1 = \{A, E\}, X_2 = \{G\} \text{ and } Y = \{F\}.$ [2 marks]

(*ii*)
$$X_1 = \{A\}, X_2 = \{D\}$$
 and $Y = \{G\}$. [3 marks]

In each case explain your answer.

(e) Define how Bayesian networks and Markov random fields are used to represent probability distributions, and briefly describe the trade-offs involved in choosing one versus the other.
[6 marks]