COMPUTER SCIENCE TRIPOS Part Ib - 2017 - Paper 6

8 Mathematical Methods for Computer Science (RJG)
(a) (i) State the central limit theorem.
(ii) Consider a binomially distributed random variable T with parameters $\operatorname{Bin}(n, p)$ where n is a positive integer and $0<p<1$. Using the central limit theorem derive an approximation to the probability $\mathbb{P}(T>d)$ where $d \in(0, n)$ and where n is sufficiently large.
(b) Let $\left(X_{n}\right)_{n \geq 1}$ be a Markov chain on the states $\{0,1,2\}$ with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1-\alpha & \alpha \\
1-\alpha & \alpha & 0
\end{array}\right)
$$

where $0<\alpha<1$.
(i) Draw the state space diagram for the Markov chain X_{n}.
(ii) Explain why X_{n} is an irreducible, recurrent and aperiodic Markov chain.
[6 marks]
(iii) Define an equilibrium distribution $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ for the Markov chain X_{n} and determine π.
[6 marks]

