COMPUTER SCIENCE TRIPOS Part IB - 2017 - Paper 6

4 Computation Theory (AMP)

(a) Explain what it means for a partial function h to be defined by primitive recursion from partial functions f and g. Why is h a totally defined function if f and g are?
(b) (i) Define the class of primitive recursive functions.
(ii) For each $n \in \mathbb{N}$, show that the constant function $\mathbb{N} \rightarrow \mathbb{N}$ with value n is primitive recursive.
(iii) Explain why it is the case that not every function $\mathbb{N} \rightarrow \mathbb{N}$ is primitive recursive, carefully stating any general results you use.
[3 marks]
(c) Given $e \in \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $n \in \mathbb{N}$, let $e_{n} \in \mathbb{N} \rightarrow \mathbb{N}$ be the function given by $e_{n}(x)=e(n, x)$. Suppose that e is primitive recursive.
(i) Show that each e_{n} is primitive recursive.
(ii) Using a suitable diagonalisation argument, or otherwise, prove that it cannot be the case that for all primitive recursive functions $f \in \mathbb{N} \rightarrow \mathbb{N}$ there exists $n \in \mathbb{N}$ with e_{n} equal to f.
[4 marks]

