COMPUTER SCIENCE TRIPOS Part IB – 2017 – Paper 6

4 Computation Theory (AMP)

- (a) Explain what it means for a partial function h to be defined by *primitive* recursion from partial functions f and g. Why is h a totally defined function if f and g are? [5 marks]
- (b) (i) Define the class of *primitive recursive* functions. [5 marks]
 - (*ii*) For each $n \in \mathbb{N}$, show that the constant function $\mathbb{N} \to \mathbb{N}$ with value n is primitive recursive. [2 marks]
 - (*iii*) Explain why it is the case that not every function $\mathbb{N} \to \mathbb{N}$ is primitive recursive, carefully stating any general results you use. [3 marks]
- (c) Given $e \in \mathbb{N}^2 \to \mathbb{N}$ and $n \in \mathbb{N}$, let $e_n \in \mathbb{N} \to \mathbb{N}$ be the function given by $e_n(x) = e(n, x)$. Suppose that e is primitive recursive.
 - (i) Show that each e_n is primitive recursive. [1 mark]
 - (*ii*) Using a suitable diagonalisation argument, or otherwise, prove that it cannot be the case that for all primitive recursive functions $f \in \mathbb{N} \to \mathbb{N}$ there exists $n \in \mathbb{N}$ with e_n equal to f. [4 marks]