
10

COMPUTER SCIENCE TRIPOS Part IB – 2017 – Paper 6

Semantics of Programming Languages (PMS)

Let x range over a set X of identifiers, n range over the natural numbers N, and s
range over stores: total functions from X to N.

Consider a language with the following abstract syntax.

e ::= n | x := e | !x | e1; e2
(a) Define a conventional deterministic small-step operational semantics 〈e, s〉 −→

〈e ′, s ′〉 for the language. Comment briefly on the choices you make. [5 marks]

(b) If your language is deterministic and terminating, the operational semantics
implicitly defines a more abstract semantics: we can regard each expression as
a function over stores [[e]] that takes store s to the unique number n and store
s ′ such that

〈e, s〉 −→∗ 〈n, s ′〉 ∧ 6 ∃e ′′, s ′′. 〈n, s ′〉 −→ 〈e ′′, s ′′〉

This language is quite limited in expressiveness. Describe, as clearly and
precisely as you can, the set of functions from stores to (number, store) pairs
that are expressible as [[e]] for some e. [5 marks]

(c) The primitive contexts C for this language are expressions with a single hole:

C ::= x := | e1; | ; e2

Write C [e] for the expression resulting from replacing the hole in C by e.

Say a binary relation ∼ over expressions is a congruence if e ∼ e ′ implies
∀C . C [e] ∼ C [e ′].

Say a binary relation ∼ over expressions respects final values if e ∼ e ′ implies
∀s0, n, n ′, s , s ′. (〈e, s0〉 −→ 〈n, s〉 ∧ 〈e ′, s0〉 −→ 〈n ′, s ′〉)⇒ n = n ′.

Use your characterisation of part (b) to define an equivalence relation over
expressions that is a congruence and respects final values. Explain briefly why
it has those properties. [4 marks]

(d) Define a terminating algorithm that, for any expressions e and e ′, computes
whether e ∼ e ′ or not. Explain informally why it is correct. Hint: you may
want to adapt your semantics from part (a) to compute symbolically.

[6 marks]

1

