COMPUTER SCIENCE TRIPOS Part IA – 2017 – Paper 3

9 Machine Learning and Real-world Data (SHT)

Hidden Markov Models (HMM) can be used to find names in text. In the following HMM created for this purpose, the two emitting states are $q_1 = i$ (for "inside a name") and $q_2 = o$ (for "outside a name"). Each word in the training data is labelled with either i or o. There are two sequences in the training data, as follows:

today may bakes a nice cake 0 i 0 0 0 0 peter bakes and mary bakes may like sue i i 0 i i i 0 0

- (a) Give the general formula for estimating transition probabilities from training data. Provide the full transition matrix A for this HMM based on the training data shown.
- (b) Give the general formula for calculating emission probabilities from training data, and calculate the emission probabilities P(may|o), P(may|i), P(bakes|o), P(bakes|i). [3 marks]
- (c) An HMM trained with the above training observations is exposed to the following test observation:

may bakes

Which probabilities does the HMM assign to the following two interpretations?

(i)	may is a name, and bakes is not	[2 marks]
(ii)	bakes is a name, and may is not	[2 marks]

(d) The first training observation is now replaced with:

today peter bakes a nice cake

How does this change your answers to part (c) ? [2 marks]

(e) A comparable situation to part (d) can arise even with substantial amounts of training data. Describe why this is a problem and indicate a solution to it.

[5 marks]