COMPUTER SCIENCE TRIPOS Part IA - 2017 - Paper 2

9 Discrete Mathematics (MPF)

(a) Let r and s be solutions to the quadratic equation $x^{2}-b x+c=0$.

For $n \in \mathbb{N}$, define

$$
\begin{aligned}
& d_{0}=0 \\
& d_{1}=r-s \\
& d_{n}=b d_{n-1}-c d_{n-2} \quad(n \geq 2)
\end{aligned}
$$

Prove that $d_{n}=r^{n}-s^{n}$ for all $n \in \mathbb{N}$.
(b) Recall that a commutative monoid is a structure $(M, 1, *)$ where M is a set, 1 is an element of M, and $*$ is a binary operation on M such that

$$
x * 1=x, \quad x * y=y * x, \quad(x * y) * z=x *(y * z)
$$

for all x, y, z in M.
For a commutative monoid $(M, 1, *)$, consider the structure $(\mathcal{P}(M), I, \circledast)$ where $\mathcal{P}(M)$ is the powerset of M, I in $\mathcal{P}(M)$ is the singleton set $\{1\}$, and \circledast is the binary operation on $\mathcal{P}(M)$ given by

$$
X \circledast Y=\{m \in M \mid \exists x \in X . \exists y \in Y . m=x * y\}
$$

for all X and Y in $\mathcal{P}(M)$.
Prove that $(\mathcal{P}(M), I, \circledast)$ is a commutative monoid.
(c) Define a section-retraction pair to be a pair of functions $(s: A \rightarrow B, r: B \rightarrow A)$ such that $r \circ s=\mathrm{id}_{A}$.
(i) Prove that for every section-retraction pair (s, r), the section s is injective and the retraction r is surjective.
(ii) Exhibit two sets A and B together with an injective function $f: A \rightarrow B$ such that there is no function $g: B \rightarrow A$ for which (f, g) is a sectionretraction pair.

