COMPUTER SCIENCE TRIPOS Part IA – 2017 – Paper 2

9 Discrete Mathematics (MPF)

(a) Let r and s be solutions to the quadratic equation $x^2 - bx + c = 0$.

For $n \in \mathbb{N}$, define

$$d_0 = 0$$

$$d_1 = r - s$$

$$d_n = b d_{n-1} - c d_{n-2} \quad (n \ge 2)$$

Prove that $d_n = r^n - s^n$ for all $n \in \mathbb{N}$. [4 marks]

(b) Recall that a commutative monoid is a structure (M, 1, *) where M is a set, 1 is an element of M, and * is a binary operation on M such that

$$x * 1 = x$$
, $x * y = y * x$, $(x * y) * z = x * (y * z)$

for all x, y, z in M.

For a commutative monoid (M, 1, *), consider the structure $(\mathcal{P}(M), I, \circledast)$ where $\mathcal{P}(M)$ is the powerset of M, I in $\mathcal{P}(M)$ is the singleton set $\{1\}$, and \circledast is the binary operation on $\mathcal{P}(M)$ given by

$$X \circledast Y = \{ m \in M \mid \exists x \in X. \exists y \in Y. m = x * y \}$$

for all X and Y in $\mathcal{P}(M)$.

Prove that $(\mathcal{P}(M), I, \circledast)$ is a commutative monoid. [10 marks]

- (c) Define a section-retraction pair to be a pair of functions $(s : A \to B, r : B \to A)$ such that $r \circ s = id_A$.
 - (i) Prove that for every section-retraction pair (s, r), the section s is injective and the retraction r is surjective. [4 marks]
 - (*ii*) Exhibit two sets A and B together with an injective function $f: A \to B$ such that there is no function $g: B \to A$ for which (f, g) is a sectionretraction pair. [2 marks]