COMPUTER SCIENCE TRIPOS Part IA - 2017 - Paper 2

7 Discrete Mathematics (MPF)

(a) (i) Calculate $\operatorname{gcd}(144,77)$, the greatest common divisor of 144 and 77 , as an integer linear combination of 144 and 77 .
(ii) What is the multiplicative inverse of 77 in \mathbb{Z}_{144} and the multiplicative inverse of 67 in \mathbb{Z}_{77} ?
(iii) Describe all integers x that solve the following two congruences

$$
\left\{\begin{array}{l}
77 \cdot x \equiv 1(\bmod 144) \\
67 \cdot x \equiv 3(\bmod 77)
\end{array}\right.
$$

Indicate how one may calculate the least natural number solution to the above.

Justify your answers.
(b) For a string $w \in\{1,2\}^{*}$, let $\sum(w) \in \mathbb{N}$ denote the sum of all the numbers in it. For instance, $\sum(\varepsilon)=0$ for ε the null string, and $\sum(1212)=6$.

For every $n \in \mathbb{N}$, define $S_{n}=\left\{w \in\{1,2\}^{*} \mid \sum(w)=n\right\}$. In particular, $\varepsilon \in S_{0}$ and $1212 \in S_{6}$.
(i) List the elements of S_{n} for each $n \in\{0,1,2,3,4,5\}$.
(ii) What is the cardinality of S_{n} for each $n \in \mathbb{N}$? Prove your claim.
(iii) For all $m, n \in \mathbb{N}$, define a bijective function

$$
\left(\left(S_{m+1} \times S_{n+1}\right) \uplus\left(S_{m} \times S_{n}\right)\right) \rightarrow S_{m+n+2} \quad[3 \text { marks] }
$$

