COMPUTER SCIENCE TRIPOS Part IA - 2017 - Paper 2

2 Digital Electronics (IJW)

(a) Give the truth table for an RS Latch implemented using two cross coupled NOR gates and determine the state diagram for the \bar{Q} output.
(b) Give the truth table for a 2-to-4 decoder (i.e., 2 control inputs, S_{1}, S_{0}, and 4 outputs, $Q_{3}, Q_{2}, Q_{1}, Q_{0}$) and show how it can be implemented using 2-input NOR and NOT gates.
(c) Show how the 2-to-4 decoder in part (b) can be used to implement a 4 -to- 1 multiplexor (i.e., 4 inputs, 2 control inputs and 1 output) using only NAND gates for the additional combinational logic required.
(d) (i) Write down the state transition table corresponding to the following state diagram

where $\left[Q_{B} Q_{A}\right]$ are the current state, B and A are the inputs, and X and Y are the outputs.
(ii) Show how two D-type flip flops and two 4-to-1 multiplexors can be used to implement the Mealy machine given in the state diagram in part $(d)(i)$.

