COMPUTER SCIENCE TRIPOS Part IA - 2017 - Paper 2

1 Digital Electronics (IJW)

(a) Briefly describe the main feature of a combinational logic block.
(b) Use Boolean algebra to simplify the following expression

$$
W=A \cdot \bar{B} \cdot C \cdot \bar{D} \cdot E+A \cdot C \cdot D+A \cdot C \cdot \bar{F} \cdot G \cdot \bar{H}+A \cdot B \cdot C \cdot \bar{D} \cdot E+A \cdot C \cdot D \cdot \bar{E}+\bar{E} \cdot \bar{H}
$$

in sum of products form.
Hint: $X . Y+\bar{X} . Z=X . Y+\bar{X} . Z+Y . Z$
(c) A 2-bit binary adder sums two numbers, $A_{1} A_{0}$ and $B_{1} B_{0}$ to yield the unsigned result $Y_{2} Y_{1} Y_{0}$, where the zero subscript indicates the least significant bit (LSB).
(i) Write down the truth table for the required outputs Y_{2}, Y_{1} and Y_{0}.
(ii) Using a Karnaugh map (K map) or otherwise, give the simplified sum of products expression for Y_{2}.
(iii) Using a K map or otherwise, determine a simplified product of sums expression for Y_{2} and show how the circuit can be implemented using only NOR gates (of any number of inputs).
[7 marks]
(d) Simplify the following four variable function $F(A, B, C, D)$ using the QuineMcCluskey (Q-M) method:

Minterms: $\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}, \bar{A} \cdot \bar{B} \cdot C \cdot D, \bar{A} \cdot B \cdot \bar{C} \cdot D, \bar{A} \cdot B \cdot C \cdot D, A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}, A \cdot \bar{B} \cdot C \cdot \bar{D}$
Don't cares: $\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D, A \cdot \bar{B} \cdot \bar{C} \cdot D, A \cdot B \cdot C \cdot D$

