
4

COMPUTER SCIENCE TRIPOS Part IB – 2017 – Paper 3

Compiler Construction (TGG)

Consider the following simple evaluator for a language of expressions written in
OCaml.

type expr =

| Integer of int (* integer *)

| Pair of expr * expr (* pair *)

| Apply of string * expr (* apply a named function *)

type value =

| INT of int

| PAIR of value * value

(* eval : expr -> value *)

let rec eval = function

| Integer n -> INT n

| Pair (e1, e2) -> PAIR (eval e1, eval e2)

| Apply (f, e) -> eval_function(f, eval e)

In this code the function eval function has type string * value -> value and
is used to evaluate some “built in” functions. For example,

eval_function("add", PAIR(INT 10, INT 7))

could return the value INT 17.

(a) Rewrite the eval function in continuation passing style (CPS) to produce a
function eval cps so that the function

let eval_2 e = eval_cps (fun x -> x) e

will produce the same results as the function eval. [10 marks]

(b) Eliminate higher-order continuations from your eval cps function. That is,
introduce a data type cnt to represent continuations and write functions of
type

eval_cps_dfn : cnt -> expr -> value

apply_cnt : cnt * value -> value

eval_3 : expr -> value

using the technique of defunctionalisation. Note that functions eval cps dfn

and apply cnt will be mutually recursive. [10 marks]

1


