COMPUTER SCIENCE TRIPOS Part IA - 2017 - Paper 1

10 Algorithms (DJW)

(a) Consider a directed acyclic graph with V vertices and E edges.
(i) What is meant by a total order on the vertices consistent with the edges?
[2 marks]
(ii) Describe an $O(E+V)$ algorithm to compute such a total order. [3 marks]
(b) Consider a directed graph with non-negative edge costs and with a given start vertex s.
(i) Dijkstra's algorithm computes distances from s to every other vertex. Give psuedocode for Dijkstra's algorithm.
(ii) Dijkstra's algorithm can be implemented using a Fibonacci heap. State the complexity of using this implementation. Justify your answer carefully. [Note: Your answer should include mention of amortized costs.] [4 marks]
(c) Consider a directed acyclic graph with non-negative edge costs and with a given start vertex s.
(i) Devise an algorithm to compute distances from s in $O(E+V)$ time. Justify why your algorithm is correct.
[4 marks]
(ii) Explain, with an example, why Dijkstra's algorithm might take $\Omega(V \log V)$ time.
[3 marks]

