
CST1.2017.5.1

COMPUTER SCIENCE TRIPOS Part IB

Wednesday 7 June 2017 1.30 to 4.30

COMPUTER SCIENCE Paper 5

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted



CST1.2017.5.2

1 Computer Design

(a) Write one or more lines of SystemVerilog that correspond to a complete module
for each of the following circuits. Aim for simplicity and explain any subtleties
of your implementation.

(i)

[4 marks]

(ii)

[4 marks]

(iii)

[4 marks]

2



CST1.2017.5.3

(b) Consider the following SystemVerilog module:

module gcd(
input logic clk,
input logic rst,
input logic start,
input logic [15:0] Ain,
input logic [15:0] Bin,
output logic [15:0] answer,
output logic done
);

logic [15:0] a, b;
always_ff @(posedge clk or posedge rst)

if(rst)
begin

a <= 0;
b <= 0;
answer <= 0;
done <= 0;

end
else

if(start)
begin

a <= Ain;
b <= Bin;
done <= 1'b0;

end
else if(b==0)

begin
answer <= a;
done <= 1'b1;

end
else if(a>b)

a <= a-b;
else

b <= b-a;
endmodule

(i) For inputs Ain=21 and Bin=15, complete the following state transition table
(where X means undefined or unknown values): [6 marks]

input current state next state
Ain Bin start a b a' b' done' answer'

21 15 1 X X 21 15 0 X
21 15 0 21 15

(ii) What values of Ain and Bin will cause the module to fail to terminate (i.e.
done will never go high)? [2 marks]

3 (TURN OVER)



CST1.2017.5.4

2 Computer Design

Consider the following statements about processors. Why are they fallacies?

(a) A benchmark is a typical program that accurately predicts performance.
[4 marks]

(b) Instructions per second is an accurate measure to compare performance among
computers. [4 marks]

(c) Peak performance tracks observed performance. [4 marks]

(d) You can design an ideal processor suitable for all applications. [4 marks]

(e) Adding more pipeline stages always improves performance. [4 marks]

4



CST1.2017.5.5

3 Computer Design

A shared-memory multicore processor contains three cores, each with a private L1
cache connected to a bus along with a shared L2 cache. Coherence is maintained
through a basic MSI cache coherence protocol.

(a) What is a shared-memory multicore processor? [2 marks]

(b) Contrast the memory hierarchy described above against one containing multiple
private L2 caches (with the same total L2 cache space). [6 marks]

(c) Describe whether each of the following scenarios represents a valid combination
of coherence states across the L1 caches for data at a particular memory address.
For example, [M, M, M] represents the data being in state M in each of the three
L1 caches in the processor.

(i) [M, M, M]

(ii) [S, S, S]

(iii) [I, I, I]

(iv) [M, S, I]

[8 marks]

(d) Describe the disadvantages of the basic MSI protocol in each of the following
scenarios.

(i) A core modifies private data that it has already read.

(ii) A core reads data that is already in another core’s L1 cache.

[4 marks]

5 (TURN OVER)



CST1.2017.5.6

4 Computer Networking

(a) Two network-architecture approaches are commonplace: hop-by-hop, and end-
to-end.

Briefly compare these two approaches with reference to the encryption of a
web-page and the use of WPA2 (or similar schemes) to secure WiFi. [4 marks]

(b) Consider four components that constitute delay for a packet network: queueing
delay, processing delay, propagation delay, and transmission delay.

(i) Order these delays by magnitude, giving typical values for each and making
clear your justification. [8 marks]

(ii) (A) Describe circumstances where processing delay for one packet type
varies significantly from the mean processing delay of a packet.

[2 marks]

(B) Estimate what such a difference in delay might be. State your
assumptions and show your working. [2 marks]

(iii) Packet-network delays of a typical datacentre may vary significantly from
those found in the Internet.

Discuss why this should be the case, with particular reference to
the Bandwidth-Delay product and discuss the implications for network
architectures in datacentres where we wish to minimise delay. [4 marks]

6



CST1.2017.5.7

5 Computer Networking

(a) A router vendor is interested in building an ultra low-cost router. Analysis
reveals that the total build-costs are 90% for linecards and 10% for control
processors. The router vendor focuses on reducing linecard costs.

Discuss which of the following strategies would help the vendor achieve this goal.
Keep in mind that high-speed memory is expensive.

(i) Develop a faster implementation of Dijkstra’s algorithm. [2 marks]

(ii) Convince the IETF to eliminate IPv4 fragmentation support. [2 marks]

(iii) Convince the IETF to abolish multi-homing. [2 marks]

(iv) Convince operating systems vendors to implement packet “pacing” so end
hosts will not generate bursts of back-to-back packets. [2 marks]

(b) You are running a TCP-based movie streaming service called MeTube. Several
of your users are complaining about poor performance. You call in your team
of three engineers to examine the problem. They all observe that the 10Gbps
access link to the MeTube server is only 25% utilised, and that the server’s CPU
is only 15% utilised. Each engineer then independently reports back with the
following conclusions and suggestions for improvements.

Consider each of the engineers’ conclusions and discuss why it is correct or not.

(i) Engineer Phil notices that a number of packets are being retransmitted
multiple times. Phil recommends the TCP implementation be modified
reducing both the timeout period and the fast retransmit threshold from 3
to 2 dupAcks (duplicate Acknowledgments). While this may lead to even
more retransmissions, Phil concludes this is OK as the server’s access link
is only 25% utilised. With these changes, users will receive lost packets
faster and hence will definitely see improved performance. [4 marks]

(ii) Engineer Leslie runs traceroute from the MeTube server to impacted users
and finds that a router R1 along the path repeatedly drops her traceroute
messages. Leslie concludes that the high packet drop rates at R1 are the
cause of their performance problems. [4 marks]

(iii) Engineer Chris notes that users reporting problems have IP addresses
belonging to the Classless Inter-Domain Routing (CIDR) block allocated
to Tiny-Telco. She believes the problem may be due to high loss rates
involving Tiny-Telco’s network. Chris recommends they contact Tiny-Telco
and ask them to diagnose and fix the problem. [4 marks]

7 (TURN OVER)



CST1.2017.5.8

6 Computer Networking

(a) Describe on-off flow control. In what circumstances is it appropriate?
[4 marks]

(b) Describe the operation of window-based flow control. [4 marks]

(c) What happens if a flow using window-based flow control passes through a
highly-loaded switch or router? You may assume the switch or router does
not participate in the flow control protocol. [4 marks]

(d) How is this addressed in the TCP protocol? [4 marks]

(e) What are the advantages and disadvantages of having Internet routers
participate in window-based flow control of every TCP connection? [4 marks]

8



CST1.2017.5.9

7 Concurrent and Distributed Systems

SimplisticFS is an in-memory filesystem, implemented as a directed and (mostly)
acyclic graph in which nodes represent directories (which contain names and pointers
to other nodes, including a special entry named ‘‘..’’ that points back to its parent
node) or files (leaf nodes that contain data). The in-memory structure, with the
exception of ‘‘..’’ entries in directories, is therefore a tree. SimplisticFS does not
support hard links, and the ‘‘..’’ of the root node points back to itself. Path
lookups start at the root node, and pathnames with multiple segments, separated
by ‘‘/’’, are implemented as lookup operations on successive nodes. For example,
opening ‘‘/foo/bar’’ will look up ‘‘foo’’ in the root, and then ‘‘bar’’ relative
to the foo node.

Fine-grained locking adds a read-write lock to each node to ensure safe concurrent
access. Operations for reading a directory entry (e.g., to list the contents or look up
a child), or for reading file data will: acquire the node lock for read; perform the
operation; and then release it. Operations for mutating a directory entry, (e.g., to
add or remove a child node of a directory), or for modifying file data will: acquire its
lock for write; perform the operation; and then release it. The lock implementation
permits read recursion, write recursion, and race-free lock upgrades from read to
write by threads.

(a) For (i) files and (ii) directories, explain, giving examples, how using a read-write
lock may improve performance compared to mutual exclusion. [4 marks]

(b) The developers discover that compound operations, such as recursive path
lookup, suffer from race conditions. They decide to adopt strict two-phase
locking across compound operations to resolve this problem.

(i) Define strict 2-phase locking and describe how to apply it. [4 marks]

(ii) Explain why deadlock cannot occur prior to this change. [2 marks]

(iii) The new strategy suffers deadlocks when files are removed under high load.
Given that removing a file requires a write lock on its parent directory, give
an example of how a deadlock might occur. [4 marks]

(c) Moving from a “giant lock” to this finer-grained model focused on files and
directories improves performance for some but not all workloads.

(i) Describe and explain an example of a workload in which file-granularity
locking is unlikely to eliminate lock contention. [2 marks]

(ii) Propose a more granular locking strategy to improve parallelism with
respect to (c)(i). Describe the potential performance benefit with respect
to that workload, and additional overhead that might be incurred.

[4 marks]

9 (TURN OVER)



CST1.2017.5.10

8 Concurrent and Distributed Systems

The developers of FictionalOS have an implementation of the Network File System
version 3 (NFSv3) without support for distributed locking. As a result, applications
experience race conditions when operating concurrently on files in NFS. Rather than
using the hideously complex NFS distributed locking protocol, the OS developers
decide to develop their own simpler locking mechanism (“How hard can it be?”).
They add two new NFS remote procedure calls (RPCs) that can be used on file nodes
in NFS: NFS_LOCK and NFS_UNLOCK, which lock and unlock nodes, respectively. These
are implemented through simple atomic operations on the in-memory node data
structure representing a file on the NFS file server:

nfs_lock(node) { nfs_unlock(node) {

atomic { atomic {

if (node->lock_held != 0) node->lock_held = 0;

return (FAILURE); return (SUCCESS);

node->lock_held = 1; }

return (SUCCESS); }

}

}

SunRPC retransmission ensures reliable delivery when packets are lost. If a client
receives FAILURE, it will issue new RPCs each second until it receives SUCCESS.

(a) Explain why, when server reboots, concurrent applications writing to files across
multiple nodes may suffer data races despite acquiring suitable locks, and
describe a solution to this problem. [4 marks]

(b) (i) Define at-least once RPC semantics. [1 mark]

(ii) Explain why at-least once RPC semantics may cause trouble for each of
the NFS_LOCK and NFS_UNLOCK RPCs. [4 marks]

(c) Explain why the polling nature of the NFS_LOCK RPC, as described, makes it
difficult to implement reliable server-side deadlock detection. [4 marks]

(d) (i) Define priority inheritance and explain what problem it solves. [2 marks]

(ii) Describe the changes to the NFS_LOCK and NFS_UNLOCK RPCs necessary
to implement priority inheritance. Include any new RPC arguments and
return values. Explain the changes (and limitations) this imposes on
software implementations. [5 marks]

10



CST1.2017.5.11

9 Concurrent and Distributed Systems

This pseudocode, executing in process Pj, employs buffering to impose ordering:

receive(M from Pi) { // Message M received from process Pi

S = getSeq(M); // Extract sequence number S

if (S == nextSeq(Sji)) { // If S is the next sequence number:

deliver(M); // Deliver M to current process (Pj)

Sji = flush(HBQ, Sji); // Deliver backlog from HBQ; update Sji

} else holdback(HBQ, M); // Else: Hold back M for future delivery

}

(a) Explain what ordering model(s) this pseudocode implements. [2 marks]

(b) Write pseudocode (with comments) for the following functions, to be used on
the sender (Pi) or receiver (Pj), which accept M (a message), and S (a sequence
number): [8 marks]

Receiver receive reliably(M) Reliably receive M from Pi.
Sender send reliably(M) Reliably send M to Pj.
Sender process ack(S) Handle a received ACK for S from Pj.
Sender timeout(S, M) Process a timeout for S and M .

As needed, employ the following additional utility functions:

drop(M) Drop received M without delivering.
setSeq(M, S) Set sequence number S on message M .
transmit msg(M) Transmit message M to Pj.
transmit ack(S) Transmit an ACK with sequence number S to Pi.
sched timeout(S, M) Schedule timeout(S, M) to run in 5 ms.
cancel timeout(S) If scheduled, cancel timeout for S.

(c) Define the happens-before relationship. [2 marks]

(d) The pseudocode above imposes ordering on pair-wise communications. Assum-
ing reordering but no message loss, write pseudocode (with comments) for the
following functions supporting causal ordering for group communications:

[8 marks]

Receiver receive causally(M) Causally receive from the group.
Sender send causally(M) Causally send to the group.

As needed, employ the following additional utility functions:

getVec(M) Retrieves the version vector from a message.
setVec(M, V) Set vector V on message M .
testVec(LV, RV) Returns whether vector RV only differs from LV in

that it has exactly one entry one greater than the
corresponding entry in LV.

updateVec(V) Returns V with the local vector entry incremented.
transmit group(M) Transmits message M to the entire group.

11



CST1.2017.5.12

END OF PAPER

12


