
CST0.2017.1.1

COMPUTER SCIENCE TRIPOS Part IA

NATURAL SCIENCES TRIPOS Part IA (Paper CS/1)

PSYCHOL. AND BEHAVIOURAL SCIENCES TRIPOS Part I (Paper CS 1)

Monday 5 June 2017 1.30 to 4.30

COMPUTER SCIENCE Paper 1

Answer one question from each of Sections A, B and C, and two questions from
Section D.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted



CST0.2017.1.2

SECTION A

1 Foundations of Computer Science

A one-person game (such as Rubik’s cube, or peg solitaire) has a finite number of
possible states, some of which count as winning. A move is a step from one state to
another. From each given state, the player can choose from a set of (zero or more)
possible next moves. We call a state winnable if a winning state can be reached from
it in zero or more moves.

For simplicity, assume that states are coded as integers. Also assume that we are
given functions winning(x) returning true or false and next(x) returning the list of
states that can be reached in one move from state x.

(a) The following code is an attempt to implement the notion of winnable:

fun exists p [] = false

| exists p (x::xs) = p x orelse exists p xs;

fun winnable x = winning x orelse exists winnable (next x);

Briefly explain how this code works. Also describe its main limitation: how it
can fail to find a winning state that is only a few moves away. Illustrate this
point by giving specific definitions of winning and next. [5 marks]

(b) Modify the code above to yield the function winpath x, which returns the list
of states from x to the winning state found or, alternatively, the empty list to
indicate that no winning state was found. [4 marks]

(c) Sometimes we are only interested in a winnable state if it is only a few moves
away from the current state. Modify your solution from part (b) to obtain the
function bounded_winpath n x, which looks for winning states that are at most
n moves away from x. [3 marks]

(d) Use your solution from part (c) to obtain the function new_winpath x, which
has the same objective as winpath x, but without the limitation mentioned in
part (a). Briefly explain why the limitation no longer applies and the price that
has been paid for this. [5 marks]

(e) Briefly outline an alternative approach to correcting the limitation mentioned in
part (a), using the notion of a queue. What are the advantages and drawbacks
of this approach? [3 marks]

For full credit, code should be concise and clear. Exceptions may be useful in this
but are not required.

2



CST0.2017.1.3

2 Foundations of Computer Science

(a) Define an ML datatype for infinite lists, without the possibility of finite lists.
Briefly illustrate programming techniques for your datatype by declaring

(i) a recursive functional (analogous to map for ordinary lists) that applies a
given function to every element of an infinite list.

(ii) a function for generating infinite lists of the form x, f(x), f(f(x)), . . . for
any given f and x.

[6 marks]

(b) Briefly explain why the function analogous to append (@) for ordinary lists is
of no value for your infinite list data type. Code a function to combine two
arbitrary infinite lists, yielding a result that includes the elements of both lists.

[3 marks]

(c) Use the functions declared in your previous solutions to express an infinite list
consisting of all numbers of the form 5i × 7j × 9k for integers i, j, k ≥ 0.

[3 marks]

(d) The list [1, 5, 7, 25, 9, 35, 35, . . .] is a legitimate solution to part (c) above, but
note that the integers are out of order. Code a function to merge two ordered
infinite lists, and use that to modify your previous solution to yield the same set
of numbers but in strictly increasing order. Briefly comment, with justification,
on whether merge sort for ordinary lists can be generalised to infinite lists.

[8 marks]

For full credit, code should be concise and clear.

3 (TURN OVER)



CST0.2017.1.4

SECTION B

3 Object-Oriented Programming

An online retailer uses custom Java software to manage their inventory and sales.

(a) Each product sold is represented using an immutable Product object. Explain
what is meant by immutable, how immutability is typically achieved in Java and
the advantages of using immutable objects in general. [4 marks]

(b) Product objects are requested through a Product getProduct(long code)

method, which returns a reference to a Product object given a valid product
code. Product information is often re-requested as customers make their
selections so the 10,000 most recently accessed Product objects are cached in
memory. Uncached Product objects are created with information retrieved from
a database when requested.

(i) The cache uses a java.util.HashMap and a custom implementation of a
doubly-linked list. The list keeps an ordering over the Product objects
where more recently used objects are at the front. The HashMap provides
fast lookup into the list. Show that this scheme gives a constant (O(1))
running cost for getProduct(), ignoring the cost of the database lookup.

[3 marks]

(ii) Create a class Store that implements the cache as described. You need
only define getProduct and any state or definitions it needs. All other
state and methods can be ignored. You may assume the existence of a
method loadFromDatabase(long code) that will create a Product object
for product code code or return null if the code is invalid, and that a
Product object has a long getProductCode() method that returns its
product code. [10 marks]

(c) A customer’s basket of items, represented by a class Basket, can be viewed as a
list of products. Therefore Basket might extend LinkedList<Product>. Com-
pare this approach to a Basket that contains (“has-a”) LinkedList<Product>

instead. [3 marks]

4



CST0.2017.1.5

4 Object-Oriented Programming

(a) Give four advantages of Java’s checked exceptions over return values for error
indication. [4 marks]

(b) Comment on the appropriate use of Java’s checked exceptions within public,
protected and private methods. [6 marks]

(c) Consider a method that can encounter at least two errors (Error1 and Error2 ).
Compare and contrast the following approaches to providing exceptions for these
errors.

(i) throw new MethodError(), where MethodError is a direct subclass of
Exception.

(ii) throw new Exception() for both errors.

(iii) throw new MethodError(errortype), where MethodError directly sub-
classes Exception and contains state recording which error occurred
(initialised by parameter errortype).

(iv) throw new Error1() and throw new Error2(), where Error1 and
Error2 directly subclass MethodException, which directly subclasses
Exception.

(v) throw new Exception("Error1") and
throw new Exception("Error2").

(vi) throw new Error1() and throw new Error2(), where the classes Error1
and Error2 directly subclass Exception.

[10 marks]

5 (TURN OVER)



CST0.2017.1.6

SECTION C

5 Numerical Methods

A programmer is asked to write a function that raises a single-precision number to
the power of 2.4. His manager advises him to take the following approach involving
squaring and fifth roots, and to use Newton Raphson for the fifth root step.

f(x) = x2.4 = x2 × 5√
x2

(a) State why the above identity holds. [1 mark]

(b) Sketch an implementation of this approach coded in Java or ML. Use the four
standard arithmetic operators but do not use any other built-in maths operators
or libraries. You must include an iteration termination strategy. [8 marks]

(c) Assuming values of x of around unity, and stating any other assumptions you
make, give the worst-case error expected in your result assuming the input x is
perfectly-representable. [Note: macheps for single precision ε = 1.19× 10−7 but
you may give your answer in terms of ε.] [3 marks]

(d) What worst-case error arises when the input value was approximated by the
nearest representable value and so is already out by as much as ±ε/2?

[2 marks]

(e) A colleague suggests it would be better to simply use the logarithm and
exponential functions in the standard library. Another says you should just use
a suitable polynomial evaluation (i.e. a power series) for the complete problem.
Discuss whether either of these might be better or worse than the original
suggestion in terms of performance and accuracy. [6 marks]

6



CST0.2017.1.7

6 Numerical Methods

A seismic probe bores itself into the seabed, going as deep as it can before running
out of fuel. This takes about five minutes. It rotates its spiral drill head at rate R(t)
that follows a pre-programmed profile. Its downwards velocity ẏ is proportional to
R and to the square-root of the probe’s weight w, and is given by

ẏ = 3.6 × R(t) ×
√
w.

The weight of the probe is the weight of its fuel, which starts at 1500 plus its own
intrinsic weight, which is fixed at 35. The fuel weight decreases at a rate of 1.2 R(t).

(a) Give the state vector for a forwards FDTD simulation of this system using
Euler’s Method. [1 mark]

(b) Assuming a function is provided that returns R(t), give a program that
uses Euler’s Method (a straightforward, forward finite-difference simulation) to
determine the depth achieved. [4 marks]

(c) Describe the errors you might expect if you chose a time step that was
inordinately small or inordinately large. What is the maximum time step for
Euler’s method to remain stable in this system? Suggest, with justification, a
suitable time step. [6 marks]

(d) Recall that a backwards stencil uses the values at the end of the timestep to
determine the rate of change during that timestep. When is this usable and
useful in general? Is it sensible for this application? Give modified code that
implements the backwards stencil method. [6 marks]

(e) For the probe to drill as deep as possible, should R(t) generally start small and
grow larger? Justify your answer. [3 marks]

7 (TURN OVER)



CST0.2017.1.8

SECTION D

7 Algorithms

This question is about Binary Search Trees (BSTs) and Red-Black Trees (RBTs).

(a) Using a diagram, explain what a BST rotation is and its purpose. [3 marks]

(b) Consider the following buggy pseudocode.

0 def mystery(x):

1 y = x.r

2 x.r = y.l

3 if y.l != null:

4 y.l.p = x

5 x.p = y.p

6 if x == x.p.l:

7 x.p.l = y

8 else:

9 x.p.r = y

10 y.l = x

(i) Explain what it intends to do, give it a meaningful name, describe all
the identifiers used (x, y, r, l, p) and the (intended) precondition and
postcondition of the routine. [4 marks]

(ii) Identify, explain and fix the bugs, one by one, referring to a diagram if
useful. Finally, give a fully corrected version of the code. [8 marks]

(c) State, with a proof or counterexample as appropriate, whether each of the
following statements is true or false.

(i) In an RBT with more than one node, at least one node is red. [2 marks]

(ii) In a BST with n nodes, exactly n− 1 rotations are possible. [3 marks]

8



CST0.2017.1.9

8 Algorithms

This question is about hash tables.

(a) Briefly explain hash functions, hash tables and collisions. [3 marks]

(b) Explain the open addressing strategy of collision resolution and the term probing
sequence used in that context. [3 marks]

(c) Explain quadratic probing and its advantages and disadvantages. [Hint: refer to
primary and secondary clustering.] [3 marks]

(d) Give a general mathematical expression for the probing function p(k, i) used in
quadratic probing. The expression should yield a 0-based index into the table,
referencing the key k, the probe number i, the hash function h, the table size m
and the constants c1 and c2. [3 marks]

(e) Does the following pseudocode implement a form of quadratic probing? If so,
derive values for c1 and c2 in the equation you produced for part (d). If not,
prove it doesn’t. In either case, clearly justify your reasoning. [8 marks]

def get(k):

j = h(k)

i = 0

while true:

if T[j].key == null: raise NotFound

if T[j].key == k: return T[j].payload

i = i+1

if i == m: raise NotFound

j = (i+j) mod m

9 (TURN OVER)



CST0.2017.1.10

9 Algorithms

We wish to store a dynamic collection of records, each of the form {timestamp,

value}, where value is a real number. The collection should support the operations
append_newer(t,v) to add a new record (which we can assume has a larger
timestamp than any existing record), pop_oldest() to remove the oldest record,
and get_oldest() to inspect the oldest without removing it.

(a) Define the Queue abstract data type. Describe an implementation using a linked
list. Explain how to use it for this dynamic collection of records. [3 marks]

The collection should also support get_max(), which returns a pointer to the record
with the highest value in the collection. Ties may be broken arbitrarily.

(b) A simple implementation of get_max() simply scans through the entire list.
What is the worst-case cost, given the number n of items in the collection?

[1 mark]

(c) An engineer friend suggests keeping a pointer maxrecord to the record with the
largest value so that the entire list only need be rescanned when the item pointed
to by maxrecord is removed. Give an example to show that n operations could
take Ω(n2) time. [3 marks]

(d) Explain the terms amortized cost and potential method. Explain the relationship
between aggregate true costs and aggregate amortized costs. [4 marks]

(e) Devise an implementation in which all operations have O(1) amortized cost, and
use the potential method to justify your answer. Illustrate what happens when
we start with a list of values [5, 8, 3, 6, 2] where 5 is oldest and 2 is newest, and
then append a newer record with value 7. [Hint: Where is the largest item newer
than maxrecord, and the largest item newer than this, and so on?] [9 marks]

10



CST0.2017.1.11

10 Algorithms

(a) Consider a directed acyclic graph with V vertices and E edges.

(i) What is meant by a total order on the vertices consistent with the edges?
[2 marks]

(ii) Describe an O(E+V ) algorithm to compute such a total order. [3 marks]

(b) Consider a directed graph with non-negative edge costs and with a given start
vertex s.

(i) Dijkstra’s algorithm computes distances from s to every other vertex. Give
psuedocode for Dijkstra’s algorithm. [4 marks]

(ii) Dijkstra’s algorithm can be implemented using a Fibonacci heap. State
the complexity of using this implementation. Justify your answer carefully.
[Note: Your answer should include mention of amortized costs.] [4 marks]

(c) Consider a directed acyclic graph with non-negative edge costs and with a given
start vertex s.

(i) Devise an algorithm to compute distances from s in O(E+V ) time. Justify
why your algorithm is correct. [4 marks]

(ii) Explain, with an example, why Dijkstra’s algorithm might take Ω(V log V )
time. [3 marks]

END OF PAPER

11


