COMPUTER SCIENCE TRIPOS Part II - 2016 - Paper 8

6 Digital Signal Processing (MGK)

(a) Figures (i)-(viii) show eight different input vectors $x \in \mathbb{C}^{8}$. For each, identify one of figures $(A)-(H)$ that shows the DFT output $X \in \mathbb{C}^{8}$ with $X_{k}=\sum_{n=0}^{7} x_{n} \cdot \mathrm{e}^{-2 \pi \mathrm{j} k n / 8}$.
Briefly explain each choice. Real components are shown as circles. For non-real vectors, the imaginary components are shown in addition as crosses. [8 marks]
(i)

(A)

(ii)

(B)

(iii)

(C)

(iv)

(v)

(E)

(vi)

(vii)

(G)

(H)

(b) Are these statements true or false? Explain your answers.
(i) The system $y_{n}=x_{n}+y_{n-1}$ has an impulse response with z-transform $\frac{1}{1+z}$.
(ii) A continuous signal can only be reconstructed after sampling if the sampling frequency is larger than twice the highest frequency in the signal.
(iii) Convolution of a signal with a triangular window function causes its power spectrum to be multiplied with a sinc ${ }^{3}$ function.
(iv) To convert the z-transform $H(z)$ of the impulse response of any LTI filter into the z-transform of its step response, divide $H(z)$ by $1-z^{-1}$.

