COMPUTER SCIENCE TRIPOS Part II – 2016 – Paper 8

4 Computer Systems Modelling (RJG)

(a) (i) Suppose that $F_X(x)$ is a distribution function. Show the *inverse transform* result, namely that, if U is a random variable uniformly distributed in the interval (0, 1) then

$$X = F_X^{-1}(U)$$

is a random variable with distribution function $\mathbb{P}(X \leq x) = F_X(x)$. [4 marks]

- (ii) Discuss the notion of a pseudo-random number generator for uniform random variables. Describe suitable algorithms for generating pseudorandom numbers.
 [6 marks]
- (*iii*) Using the inverse transform result in part (a)(i) derive a method to generate a stream of independent pseudo-random numbers from an exponential distribution with parameter $\lambda > 0$. What are the true mean and variance of these numbers in terms of λ ? [4 marks]
- (b) (i) Suppose that you conduct a simulation experiment to estimate the mean, μ , of a random quantity X from a sample of n values X_1, X_2, \ldots, X_n . How would you estimate μ ? [2 marks]
 - (*ii*) Now suppose that your simulation also yields a sample of n values Y_1, Y_2, \ldots, Y_n of the random quantity Y where $\mathbb{E}(Y) = \mu_Y$ is a known number. How would you use the method of *control variates* to improve your estimator of μ ? Your answer should mention all quantities that may need to be estimated and in what way you will improve the estimation of μ . [4 marks]