COMPUTER SCIENCE TRIPOS Part II - 2016 - Paper 8

11 Security II (MGK)

(a) Why does the formal security definition for collision-resistant hash functions require a key s and a security parameter n, even though most commonly used standard secure hash functions lack such input parameters?
(b) If $h_{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(n)}$ is a collision-resistant hash function, do the following constructions H_{s} also provide collision-resistant hash functions? Explain your answers.
[2 marks each]
(i) $H_{s}(x)=h_{s}(x) \| x \quad$ (i.e. append $\left.x\right)$
(ii) $H_{s}(x)=h_{s}(x) \| \operatorname{LSB}(x) \quad$ (i.e. append least significant bit of x)
(iii) $H_{s}(x)=h_{s}(x \mid 1) \quad$ (bitwise-or, i.e. set least significant bit of x to 1)
(c) Use Euler's theorem to calculate $5^{-1} \bmod 8$.
(d) The standard Digital Signature Algorithm (DSA) uses a cyclic subgroup $\mathbb{G} \subset \mathbb{Z}_{p}^{*}$ of the integers modulo a prime p, with prime order q, where q divides $p-1$.
(i) Give two advantages of using a multiplicative subgroup of prime order, as opposed to just using \mathbb{Z}_{p}^{*}, in cryptographic schemes based on the Discrete Logarithm problem.
[2 marks]
(ii) Why is it possible to choose q substantially smaller than p, and what is an advantage of doing so?
[4 marks]

