COMPUTER SCIENCE TRIPOS Part II - 2016 - Paper 8

10 Quantum Computing (AD)

Let $f:\{0,1\}^{2} \rightarrow\{0,1\}$ be a Boolean function of two inputs. Let U_{f} be the implementation of f as a unitary operator on 3 qubits defined by:

$$
U_{f}|x\rangle|y\rangle|z\rangle=|x\rangle|y\rangle|z \oplus f(x, y)\rangle,
$$

where \oplus denotes the exclusive-or operation, and $|x\rangle|y\rangle|z\rangle$ is any computational basis state.

Consider the following circuit (a two-qubit version of the Deutsch-Josza circuit) in which X denotes a NOT gate, H denotes a Hadamard gate and M is a two-qubit measurement in the computational basis.

(a) Show that if f is a constant function, the outcome of the measurement M is 00 with probability 1.
(b) Show that if f is the XOR function, the outcome of the measurement M is 11 with probability 1 .
(c) What are the probabilities of M measuring 00 and 11 respectively, if f is the Boolean AND function?

