
9

COMPUTER SCIENCE TRIPOS Part IB – 2016 – Paper 6

Semantics of Programming Languages (PMS)

Consider the imperative language syntax below. Here n ranges over 32-bit numbers
N32 = [0, .., 232 − 1], with modular addition ⊕, and x ranges over an infinite set of
identifiers.

e ::= n | ref e | !e | e := e ′ | skip | e; e ′ | x | let x = e in e ′

We give it two semantics. The first extends the syntax with abstract locations l
(taken from some infinite set L) and has an abstract store s, a finite partial function
from abstract locations to values v ::= n | l . The initial abstract store s0 is the
partial function with empty domain. The semantic rules are all standard; the most
interesting are shown below for reference.

〈e1, s1〉 −→ 〈e2, s2〉

l 6∈ dom (s)

〈ref v , s〉 −→ 〈l , s + {l 7→ v}〉
ref1

l ∈ dom (s) ∧ s(l) = v

〈!l , s〉 −→ 〈v , s〉
deref1

l ∈ dom (s)

〈l := v , s〉 −→ 〈skip, s + {l 7→ v}〉
assign1

For the second semantics we have a concrete store M , a total function from concrete
addresses n ∈ N32 to values which here are also just numbers n′ ∈ N32, together with
a counter a ∈ N32 that records the next unallocated address. This semantics uses
the abstract syntax exactly as above, without abstract locations. The initial concrete
store M0 maps all addresses to 0; the initial a0 = 0. The interesting rules are:

〈e1,M1, a1〉 =⇒ 〈e2,M2, a2〉

〈ref n,M , a〉 =⇒ 〈a,M + {a 7→ n}, a ⊕ 1〉
ref1’

M (n) = n ′

〈!n,M , a〉 =⇒ 〈n ′,M , a〉
deref1’

〈n := n ′,M , a〉 =⇒ 〈skip,M + {n 7→ n ′}, a〉
assign1’

Consider expressions e of the form let x = ref 3 in e ′; !x , where e ′ does not contain
any free occurrences of x or any abstract locations l .

(a) Can e (with the initial store) reduce to a value different from 3, (i) in the abstract
semantics or (ii) in the concrete semantics? In each case, either give an example
and explain it or give a careful informal argument why not. [8 marks]

(b) Define a large subset of the expressions that reduce to the same value in both
semantics. Explain your answer. [8 marks]

(c) Discuss the advantages and disadvantages of the two semantics for a C-like
systems programming language. [4 marks]

1

