COMPUTER SCIENCE TRIPOS Part IB - 2016 - Paper 6

7 Mathematical Methods for Computer Science (JGD)

(a) (i) Express W, the primitive $N^{t h}$ root of unity, as a complex exponential.
(ii) Express the N-point real-valued discrete sequence $f[n]=\cos (2 \pi n / N)$ for $n=1,2,3, \ldots, N$ in terms of W.
(iii) Using a vector sum diagram in the complex plane, show how elements of the real-valued discrete sequence $f[n]$ are represented as a sum of complex numbers related to W, each having unit length. Construct your diagram for the particular case of integer $n=N / 8$.
[2 marks]
(b) A zero-centred pulse function $F(\omega)$ in the frequency domain ω, having unit area $F(\omega)=1 / 2$ for $\omega \in[-1,+1]$, and $F(\omega)=0$ for $|\omega|>1$, represents one ideal low-pass filter.

(i) Derive its inverse Fourier transform $f(x)$.
(ii) Sketch a plot of this function and specify the roots of $f(x)=0$. [2 marks]
(c) Let $f(x)$ be any real-valued function whose Fourier transform $F(\omega)$ exists. Show that $F(\omega)$ has the property of Hermitian symmetry $F(-\omega)=\overline{F(\omega)}$, and comment on the computational benefits that result from this property.

Hint: Represent $f(x)$ as the sum of an even function $f_{e}(x)$ plus an odd function $f_{o}(x)$, where

$$
\begin{aligned}
& f_{e}(x)=\frac{1}{2}(f(x)+f(-x)) \\
& f_{o}(x)=\frac{1}{2}(f(x)-f(-x))
\end{aligned}
$$

and then consider the Fourier transform of $f(x)=f_{e}(x)+f_{o}(x)$. You may invoke known properties of even- and odd-symmetric functions without proof.
[7 marks]

