COMPUTER SCIENCE TRIPOS Part Ib - 2016 - Paper 6

4 Computation Theory (AMP)

(a) Define the terms M of the λ-calculus and the relation $M={ }_{\beta} M^{\prime}$ of β-conversion between them.
(b) For $n \in \mathbb{N}$, what is the nth Church numeral?
(c) Consider encoding a non-empty list of λ-terms $M_{1}, M_{2}, \ldots, M_{n}$ as the λ-term

$$
\left[M_{1}, M_{2}, \ldots, M_{n}\right] \triangleq \lambda x f . f M_{1}\left(f M_{2} \ldots\left(f M_{n} x\right) \ldots\right)
$$

where the variables x and f do not occur free in $M_{1}, M_{2}, \ldots, M_{n}$. Give, with justification, λ-terms Iter, Cons, Append and Nil satisfying
(i) Iter MF[M1, M $\left.M_{2}, \ldots, M_{n}\right]={ }_{\beta} F M_{1}\left(F M_{2} \ldots\left(F M_{n} M\right)\right)$
(ii) Cons $M\left[M_{1}, M_{2}, \ldots, M_{n}\right]={ }_{\beta}\left[M, M_{1}, M_{2}, \ldots, M_{n}\right]$
(iii) Append $\left[M_{1}, \ldots, M_{m}\right]\left[N_{1}, \ldots, N_{n}\right]={ }_{\beta}\left[M_{1}, \ldots, M_{m}, N_{1}, \ldots, N_{n}\right]$
(iv) Cons M Nil $={ }_{\beta}[M]$, Iter M Nil $={ }_{\beta} M$ and Append Nil $N={ }_{\beta} N \quad$ [4 marks]

