COMPUTER SCIENCE TRIPOS Part IB – 2016 – Paper 6

4 Computation Theory (AMP)

- (a) Define the terms M of the λ -calculus and the relation $M =_{\beta} M'$ of β -conversion between them. [6 marks]
- (b) For $n \in \mathbb{N}$, what is the *n*th *Church numeral*? [2 marks]
- (c) Consider encoding a non-empty list of λ -terms M_1, M_2, \ldots, M_n as the λ -term

$$[M_1, M_2, \dots, M_n] \triangleq \lambda x f. f M_1(f M_2 \dots (f M_n x) \dots)$$

where the variables x and f do not occur free in M_1, M_2, \ldots, M_n . Give, with justification, λ -terms lter, Cons, Append and Nil satisfying

- (*i*) Iter $M F [M_1, M_2, ..., M_n] =_{\beta} F M_1(F M_2 ... (F M_n M))$ [2 marks]
- (*ii*) Cons $M[M_1, M_2, \dots, M_n] =_{\beta} [M, M_1, M_2, \dots, M_n]$ [3 marks]
- (*iii*) Append $[M_1, \ldots, M_m] [N_1, \ldots, N_n] =_{\beta} [M_1, \ldots, M_m, N_1, \ldots, N_n]$ [3 marks]
- (*iv*) Cons M Nil $=_{\beta} [M]$, Iter M F Nil $=_{\beta} M$ and Append Nil $N =_{\beta} N$ [4 marks]