COMPUTER SCIENCE TRIPOS Part IB – 2016 – Paper 5

8 Concurrent and Distributed Systems (RNW)

History graphs record dependencies between individual atomic operations within sequences of events associated with specific schedules of more complex *transactions*.

(a)	(i)	What do <i>edges</i> in a history graph represent?	[1 mark]
	(ii)	What graph property holds if a <i>bad schedule</i> is present?	[1 mark]
	(iii)	Which ACID properties may be violated by a bad schedule?	[2 marks]
	(iv)	Define <i>serial</i> and <i>serialisable</i> executions. Explain whether (and i one is a superset of the other.	f so, how) [3 marks]

(b) Two transactions, **T1** and **T2**, consist of operations on two objects, **A** and **B**:

T1:	{	T2	(v): {
	a = A.getbalance();		A.debit(v);
	<pre>b = B.getbalance();</pre>		<pre>B.credit(v);</pre>
	return (a + b);	}	
}			

- (i) Explain how a *dirty read* might be experienced through concurrent executions of **T1** and **T2**. [2 marks]
- (*ii*) Draw and label a history graph illustrating this bad schedule. [2 marks]
- (c) A programmer designs a transaction system that uses history graphs to detect bad schedules. After an operation is performed, and before its containing transaction is allowed to commit, the history graph is updated and a graph analysis is run. If a bad schedule is detected, affected transactions will be aborted and rolled back.
 - (i) Will this scheme always make progress? Explain your answer. [2 marks]
 - (ii) Time Stamp Ordering (TSO) will sometimes reject good schedules, which could lead to unnecessary transaction aborts. Does the scheme described here accept or reject more schedules than TSO? Explain why. [3 marks]
 - (*iii*) Explain one way in which this scheme may perform better than TSO. Explain one way in which it may perform worse. [4 marks]