
7

COMPUTER SCIENCE TRIPOS Part IB – 2016 – Paper 5

Concurrent and Distributed Systems (RNW)

This question is with respect to an operating system that supports multi-threaded
processes using the POSIX threads (pthreads) API. Assume that each call to printf

prints its output atomically, that thread scheduling is non-deterministic, and that
threads are allocated unique and sequential integer IDs starting with 0.

(a) Some program state is per-process, and some is per-thread. How many instances
of each of the following will a 2-thread process have: virtual address space,
executable program, register file, scheduling state (e.g., RUN, SLEEP), and stack?

[5 marks]

(b) A programmer adds printfs to a concurrent program to debug a race condition,
but the symptoms vanish. Explain why this might have happened. [2 marks]

(c) thrprint accepts as arguments the current thread’s unique ID and a debug
message to print. If each thread calls thrprint exactly once on start, how
many possible interleavings are there with n threads? [2 marks]

void thrprint(int threadid, char *message) {

printf("Thread %d: %s\n", threadid, message);

}

(d) ordered thrprint attempts to print debug messages ordered by thread ID.
Describe three ways in which the synchronisation in this implementation is
incorrect, and provide a corrected pseudocode implementation. [6 marks]

int next_thread_id = 0; // Next ID to print

pthread_mtx_t ordering_mtx; // Lock protecting next ID

pthread_cond_t ordering_cv; // next_thread_id has changed

void ordered_thrprint(int thread_id, char *message) {

pthread_mtx_lock(ordering_mtx);

if (thread_id != next_thread_id) {

pthread_cond_wait(ordering_cv, ordering_mtx);

}

next_thread_id = next_thread_id + 1;

pthread_mtx_unlock(ordering_mtx);

printf("Thread %d: %s\n", thread_id, message);

}

(e) This approach to implementing ordered thrprint suffers a substantial per-
formance problem: if lower-numbered threads are slow in starting, then
higher-numbered threads will also be delayed. Describe an alternative strategy,
paying particular attention to synchronisation, that maintains ordered output
while allowing greater concurrency. [5 marks]

1


