## COMPUTER SCIENCE TRIPOS Part IB - 2016 - Paper 4

## 8 Security I (MGK)

(a) Block ciphers usually process 64 or 128 -bit blocks at a time. To illustrate how their modes of operation work, we can use instead a pseudo-random permutation that operates on the 26 letters of the English alphabet:


As the XOR operation is not defined on the set $\{\mathrm{A}, \ldots, \mathrm{Z}\}$, we replace it here during encryption with modulo- 26 addition (e.g., $\mathrm{C} \oplus \mathrm{D}=\mathrm{F}$ and $\mathrm{Y} \oplus \mathrm{C}=\mathrm{A}$ ).
(i) Decrypt the following ciphertexts, which were encrypted using
(A) Electronic codebook mode: UOMHDJT
(B) Cipher feedback mode: RVPHTUH
(C) Output feedback mode: LNMSUUY
(ii) Determine the CBC-MAC for the message TRIPOS.
(b) Consider another small pseudo-random permutation, this time defined over the set of decimal digits $\{0,1,2, \ldots, 9\}$, using modulo-10 addition instead of XOR (e.g., $7 \oplus 3=0$ ).
(i) You have intercepted the message 100 with appended CBC-MAC block 4. The message represents an amount of money to be paid to you and can be of variable length. Use this information to generate a message that represents a much larger number, and provide a valid CBC-MAC digit, without knowing the pseudo-random permutation or key that the recipient will use to verify it.
(ii) What mistake did the designer of the communication system attacked in part $(b)(i)$ make (leaving aside the tiny block size), and how can this be fixed?

