COMPUTER SCIENCE TRIPOS Part IB – 2016 – Paper 4

8 Security I (MGK)

(a) Block ciphers usually process 64 or 128-bit blocks at a time. To illustrate how their modes of operation work, we can use instead a pseudo-random permutation that operates on the 26 letters of the English alphabet:

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	m																	•									
$\overline{E_K}$	(m)	D	G	W	Х	Т	Е	R	L	Y	Ζ	0	J	Ν	S	Ι	Q	Р	С	U	Η	В	V	F	Α	М	Κ

As the XOR operation is not defined on the set $\{A, \ldots, Z\}$, we replace it here during encryption with modulo-26 addition (e.g., $C \oplus D = F$ and $Y \oplus C = A$).

(*i*) Decrypt the following ciphertexts, which were encrypted using

(A) Electronic codebook mode: $UOMHDJT$	[2 marks]
(B) Cipher feedback mode: RVPHTUH	[4 marks]
(C) Output feedback mode: LNMSUUY	[4 marks]
(ii) Determine the CBC-MAC for the message TRIPOS.	[4 marks]

- (b) Consider another small pseudo-random permutation, this time defined over the set of decimal digits $\{0, 1, 2, ..., 9\}$, using modulo-10 addition instead of XOR (e.g., $7 \oplus 3 = 0$).
 - (i) You have intercepted the message 100 with appended CBC-MAC block 4. The message represents an amount of money to be paid to you and can be of variable length. Use this information to generate a message that represents a much larger number, and provide a valid CBC-MAC digit, without knowing the pseudo-random permutation or key that the recipient will use to verify it.
 - (*ii*) What mistake did the designer of the communication system attacked in part (b)(i) make (leaving aside the tiny block size), and how can this be fixed? [2 marks]