COMPUTER SCIENCE TRIPOS Part IB - 2016 - Paper 4

3 Computer Graphics and Image Processing (PR)

A program is required to draw an arc from $(0,1)$ to $(1,0)$ of the circle centred at the origin with unit radius.
(a) One approach would be to draw a segment of the cubic Overhauser curve defined by $(-1,0),(0,1),(1,0)$ and $(0,-1)$.
(i) Explain how a segment of an Overhauser curve in general can be represented as an Hermite cubic and so as a Bézier cubic.
(ii) Derive the formula for the resulting Bézier curve, $\mathbf{P}(t)$.
(iii) Calculate the coordinates of $\mathbf{P}\left(\frac{1}{2}\right)$. How large is the error? [Hint: $\sqrt{ } 2 \approx$ 1.414.]
[3 marks]
(b) Calculate revised control points for the Bézier curve so that it models the circular arc more accurately.
[4 marks]
(c) Describe in outline an alternative way of efficiently drawing the arc by calculating the pixels that lie on it directly.

