COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 2

9 Discrete Mathematics (MPF)

- (a) Let p and m be positive integers such that p > m.
 - (i) Prove that gcd(p, m) = gcd(p, p m). [3 marks]
 - (*ii*) Without using the Fundamental Theorem of Arithmetic, prove that if gcd(p,m) = 1 then $p \mid \binom{p}{m}$. You may use any other standard results provided that you state them clearly. [3 marks]
- (b) Let A^* denote the set of strings over a set A.

For a function $h: X \to Y$, let map_h : $X^* \to Y^*$ be the function inductively defined by

$$\operatorname{map}_{h}(\varepsilon) = \varepsilon \operatorname{map}_{h}(x \,\omega) = (h(x)) (\operatorname{map}_{h}(\omega)) \qquad (x \in X, \omega \in X^{*})$$

Prove that, for functions $f: A \to B$ and $g: B \to C$,

$$\operatorname{map}_q \circ \operatorname{map}_f = \operatorname{map}_{q \circ f}$$

Note: You may use the following Principle of Structural Induction for properties $P(\omega)$ of strings $\omega \in A^*$:

$$(P(\varepsilon) \land \forall \omega \in A^*. P(\omega) \Rightarrow \forall a \in A. P(a \, \omega)) \implies \forall \omega \in A^*. P(\omega)$$
[6 marks]

(c) We say that a relation $T \subseteq A \times B$ is a *total cover* whenever $\mathrm{id}_A \subseteq T^{\mathrm{op}} \circ T$ and $\mathrm{id}_B \subseteq T \circ T^{\mathrm{op}}$. (Recall that $T^{\mathrm{op}} \subseteq B \times A$ denotes the opposite, or dual, of the relation $T \subseteq A \times B$.)

For a relation $R \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$ $(m, n \in \mathbb{N})$, we define a new relation $\stackrel{R}{\leadsto}$ between strings over a set X as follows: for all $u, v \in X^*$,

 $u \stackrel{R}{\leadsto} v \iff R$ is a total cover and $u = a_1 \dots a_m, v = b_1 \dots b_n$, and $a_i = b_j$ for all $(i, j) \in R$

- (i) Prove that for $R = id_{\{1,\ldots,m\}}$, we have that $u \stackrel{R}{\rightsquigarrow} u$ for all $u = a_1 \ldots a_m$.
- (*ii*) Prove that $u \stackrel{R}{\leadsto} v$ implies $v \stackrel{R^{\text{op}}}{\leadsto} u$.
- (*iii*) Prove that $u \stackrel{R}{\leadsto} v$ and $v \stackrel{S}{\leadsto} w$ imply $u \stackrel{S \circ R}{\leadsto} w$.
- (*iv*) Prove that the further relation \sim on X^* defined by

$$u \sim v \iff \exists R. u \stackrel{R}{\rightsquigarrow} v$$

is an equivalence relation.

[8 marks]