COMPUTER SCIENCE TRIPOS Part IA - 2016 - Paper 2

7 Discrete Mathematics (MPF)

You may use standard results provided that you mention them clearly.
(a) (i) State a sufficient condition on a pair of positive integers a and b so that the following holds:

$$
\forall x, y \in \mathbb{Z} \cdot(x \equiv y(\bmod a) \wedge x \equiv y(\bmod b)) \Longleftrightarrow x \equiv y(\bmod a b)
$$

(ii) Recall that, for a positive integer m, we let $\mathbb{Z}_{m}=\{n \in \mathbb{N} \mid 0 \leq n<m\}$ and that, for an integer k, we write $[k]_{m}$ for the unique element of \mathbb{Z}_{m} such that $k \equiv[k]_{m}(\bmod m)$.

Let a and b be positive integers and let k and l be integers such that $k a+l b=1$. Consider the functions $f: \mathbb{Z}_{a b} \rightarrow \mathbb{Z}_{a} \times \mathbb{Z}_{b}$ and $g: \mathbb{Z}_{a} \times \mathbb{Z}_{b} \rightarrow \mathbb{Z}_{a b}$ given by

$$
f(n)=\left([n]_{a},[n]_{b}\right), \quad g(x, y)=[k a(y-x)+x]_{a b}
$$

Prove either that $g \circ f=\mathrm{id}_{\mathbb{Z}_{a b}}$ or that $f \circ g=\mathrm{id}_{\mathbb{Z}_{a} \times \mathbb{Z}_{b}}$.
(b) Let T^{*} denote the reflexive-transitive closure of a relation T on a set A.

For relations R and S on a set A, prove that if $\operatorname{id}_{A} \subseteq(R \cap S)$ then $(R \cup S)^{*}=$ $(R \circ S)^{*}$.

Note: You may alternatively consider T^{*} to be defined as either

$$
\bigcup_{n \in \mathbb{N}} T^{\circ n} \quad, \text { where } T^{\circ 0}=\operatorname{id}_{A} \text { and } T^{\circ(n+1)}=T \circ T^{\circ n}
$$

or as

$$
\bigcap\left\{R \subseteq A \times A \mid\left(T \cup \operatorname{id}_{A}\right) \subseteq R \wedge R \circ R \subseteq R\right\}
$$

or as inductively given by the rules

$$
\overline{(x, y)}((x, y) \in T) \quad \overline{(x, x)}(x \in A) \quad \frac{(x, y)(y, z)}{(x, z)}(x, y, z \in A)
$$

