COMPUTER SCIENCE TRIPOS Part IA - 2016 - Paper 2

10 Discrete Mathematics (IML)

(a) Let $\Sigma=\{a, b, c\}$. Consider each of the subsets of Σ^{*} defined by the following groups of axioms and rules, and for each prove or disprove that $\#_{a}(u) \geq \#_{b}(u)$ for all $u \in \Sigma^{*}$, where $\#_{x}(u)$ is the number of occurrences of the symbol x in the string u.
(i) $-\frac{u}{\epsilon a b b}, \frac{u, v}{u c v} \quad$ for all $u, v \in \Sigma^{*}$
(ii) $\frac{}{a}, \frac{u}{a u}, \quad \frac{u}{u b c} \quad$ for all $u \in \Sigma^{*}$
(b) For each of the subsets in part (a), indicate with justification whether they are regular languages.
Note: Complete proofs are not necessary but you should clearly outline any proof strategy.
[10 marks]
(c) For two regular expressions r and s and an alphabet Σ, define $r \& s$ to match a string in Σ^{*} if both r and s do. Given Kleene's Theorem, sketch a proof that the set of strings matched by $r \& s$ is a regular language for any regular expressions r and s.

