COMPUTER SCIENCE TRIPOS Part IA - 2016 - Paper 2

1 Digital Electronics (IJW)

(a) Consider a 4-input Boolean function that outputs a binary 1 whenever an odd number of its inputs are binary 1.
(i) Using Boolean logic or otherwise, show how the above function can be implemented using only 2-input XOR gates.
[4 marks]
(ii) Show how the above function may alternatively be implemented using one 4 -input decoder, and a minimum number of 4 -input NOR and 4 -input NAND gates.
(b) Consider the following Boolean expression

$$
F=\bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot C+A \cdot C \cdot \bar{D}
$$

(i) Show that F can be represented by the following Product of Sums (POS) form

$$
F=(\bar{B}+C) \cdot(\bar{A}+\bar{C}+\bar{D}) \cdot(A+B+\bar{C})
$$

(ii) Show how F can be implemented in a 2-level form using OR gates followed by an AND gate. Remember to indicate any NOT gates required, since only uncomplemented input variables are available.
(c) Consider your implementation in part (b)(ii).
(i) Assume that the gates have finite propagation delay. Describe in detail what happens at the output F when the inputs $\{A, B, C, D\}$ change from $\{1,1,0,1\}$ to $\{1,1,1,1\}$.
(ii) Using a Karnaugh map or otherwise, determine the other single input variable change that will give rise to a similar problem to that observed in part $(c)(i)$.
(iii) Using a Karnaugh map or otherwise, determine a modified POS expression for F that will eliminate the problems observed in parts $(c)(i)$ and $(c)(i i)$. [2 marks]

