
CST.2016.3.1

COMPUTER SCIENCE TRIPOS Part IB

Monday 30 May 2016 1.30 to 4.30

COMPUTER SCIENCE Paper 3

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted



CST.2016.3.2

1 Programming in C and C++

(a) Explain the difference between 'x' and "x" when used as constants in C.
Describe the memory representation of both values. [4 marks]

(b) Consider the following C program:

void swap(int x, int y) {

int temp = x;

x = y;

y = temp;

}

int main(int argc, char **argv) {

int x = 0;

int y = 1;

swap(x, y);

assert(x == 1);

return 0;

}

Briefly explain the role of the assert statement and why this program will
trigger an assert failure when executed. Supply two modified versions of the
program that alter the swap function definition and, if necessary, its calls, to
avoid this assert failure. One version should be in C, and the other should use
C++ language features. [4 marks]

(c) Describe the address-space layout (highlighting four areas of memory) of a
typical compiled x86 C program, and how each of these areas are used by C
constructs. [8 marks]

(d) Briefly explain what undefined behaviour is in the C standard. Under what
circumstance(s) would calling the following C function result in undefined
behaviour?

int32_t divide(int32_t a, int32_t b)

{

return a / b;

}

[4 marks]

2



CST.2016.3.3

2 Programming in C and C++

(a) Consider unspecified behaviour in C.

(i) Define what unspecified behaviour means in the C standard and give two
examples of such behaviour. [3 marks]

(ii) Briefly explain why it is important to have unspecified behaviour in the
definition of the C language. [1 mark]

(b) Compare and contrast the struct and union keywords in C, supplying an
example of a situation where it would be more appropriate to use a union

rather than a struct. [4 marks]

(c) Explain the following C or C++ language concepts. You may find it helpful to
use short code fragments or diagrams to illustrate your answer.

(i) The virtual keyword used to qualify a C++ member function and its
impact on generated code. [4 marks]

(ii) The role of the C preprocessor in the source-code compilation cycle, and
why it is a useful tool for debugging. [4 marks]

(iii) Templated functions in C++, giving one benefit and one drawback of using
them compared with using a void* function in C. [4 marks]

3 (TURN OVER)



CST.2016.3.4

3 Compiler Construction

Programming answers should be written in some notation approximating SML or
OCaml.

(a) Describe what is meant by tail recursion. [4 marks]

(b) Eliminate tail recursion from foldl given below. Explain your answer.

(*

foldl : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

*)

let rec foldl f accu l =

match l with

[] -> accu

| a::l -> foldl f (f accu a) l

[8 marks]

(c) Eliminate tail recursion from the following mutually tail-recursive functions.
Explain your answer.

let rec is_even n =

if n = 0

then true

else is_odd (n - 1)

and is_odd n =

if n = 0

then false

else is_even(n - 1)

[8 marks]

4



CST.2016.3.5

4 Compiler Construction

Consider writing a compiler for a simple language of expressions given by the following
grammar,

e ::= n (integer)
| ? (read integer input from user)
| e + e (addition)
| e− e (subtraction)
| e ∗ e (multiplication)
| (e, e) (pair)
| fst e (first projection)
| snd e (second projection)

(a) Describe the tasks that should be carried in implementing a front end for this
language and any difficulties that might be encountered. [5 marks]

(b) Suppose that the target virtual machine is stack-oriented and that the stack
elements are integer values, and addresses can be stored as integers. Explain
which other features are required in such a virtual machine. Invent a simple
language of instructions for such a machine and show how it would be used to
implement each of the expressions. [10 marks]

(c) Suppose that the following rules are proposed as possible optimizations to be
implemented in your compiler.

expression simplifies to expression
(fst e, snd e) → e

fst (e1, e2) → e1
snd (e1, e2) → e2

Describe how you could implement these rules so that the simplifications are
made only when the program’s semantics is correctly preserved. [5 marks]

5 (TURN OVER)



CST.2016.3.6

5 Concepts in Programming Languages

(a) Explain what is meant by a monad in a programming language, giving the two
fundamental operations of a monad along with their types. [3 marks]

(b) Consider the use of a monad for input-output. For the purposes of this question,
take the IO monad as including two operations readint and writeint which
respectively read integers from stdin and write integers to stdout. Give the types
of these operators. [2 marks]

(c) Assume MLreadint and MLwriteint are primitives with side effects for input-
output and consider the ML expression add1 of type int:

let val x = MLreadint() in MLwriteint(x+1); x end

(i) Give an equivalent expression which uses the IO monad instead of
side-effects, and state its type. [3 marks]

(ii) Give a function run2diff which can be applied to your answer to
part (c)(i). When so applied it should give a value in the IO monad which
corresponds to ML code that runs add1 twice and returns the difference
between the values read. [4 marks]

(d) State what happens when attempting to compile and execute the following Java
fragment (explaining the origin of any error messages or exceptions which might
arise).

Object n = new Integer(42), o = new String("Whoops");

Object [] v;

Integer [] w = new Integer[10];

v = w;

v[4] = n;

v[5] = o;
[4 marks]

(e) Consider the Java code:

Object n = new Integer(42);

ArrayList<? extends Object> v1;

ArrayList<Object> v2;

ArrayList<Integer> w = new ArrayList<>(10);

Explain any differences in behaviour between assignments v1 = w and v2 = w

and also between method calls v1.set(4,n) and v2.set(4,n). [4 marks]

6



CST.2016.3.7

6 Further Java

(a) Describe the operation of wait() and notifyAll(). Ensure that your answer
explains when locks are acquired and released. [5 marks]

(b) A future is a mechanism to store the eventual result of a computation done in
another thread. The idea is that the computation is run asynchronously and the
calling thread only blocks if it tries to use a result that hasn’t been computed
yet. An example program using a future is shown below.

Future<String> f = new Future<String>() {

@Override

public String execute() {

// ...long running computation...

return data;

};

// ...

String result = f.get(); // blocks if execute() unfinished

Use wait() and notifyAll() to provide an implementation of the Future class
that would work with the example program above. [10 marks]

(c) Give one potential advantage and one potential disadvantage of using notify()

instead of notifyAll(). [2 marks]

(d) Would it have been beneficial to use notify() instead of notifyAll() in your
implementation? Justify your answer. [3 marks]

7 (TURN OVER)



CST.2016.3.8

7 Prolog

In this question you should ensure that your predicates behave appropriately with
backtracking and avoid over-use of cut. You should provide an implementation of any
library predicates used. You may not make use of extra-logical built-in predicates
such as findAll. Minor syntactic errors will not be penalised.

(a) Explain the operation of cut (!) in a Prolog program. [2 marks]

(b) Rewrite choose without using cut. [2 marks]

choose(0,_,[]) :- !.

choose(N,[H|T],[H|R]) :- M is N-1, choose(M,T,R).

choose(N,[_|T],R) :- choose(N,T,R).

(c) Explain the operation of not (also written as \+) in a Prolog program.
[1 mark]

(d) Rewrite chooseAll without using not and cut (!). [10 marks]

chooseAll(N,L,Res) :- chooseAll(N,L,[],Res).

chooseAll(N,L,Seen,Res) :- choose(N,L,R),

not(member(R,Seen)), !,

chooseAll(N,L,[R|Seen],Res).

chooseAll(_,_,Res,Res).

(e) What is Last Call Optimisation and why is it beneficial? [3 marks]

(f ) Rewrite pos to enable Last Call Optimisation. [2 marks]

pos([],[]).

pos([H|T],[H|R]) :- H >= 0, pos(T,R).

pos([H|T],R) :- H < 0, pos(T,R).

8



CST.2016.3.9

8 Software Engineering

Discuss the contribution and the relative value of the following aspects of the modern
development environment. Illustrate with examples from your group project, or from
experience you gained working for a commercial software developer, or both. In each
case, would you discard this feature if your employer let you, or insist on retaining it
(even covertly) should your employer not value it? Explain your reasons.

(a) Dividing a project into short development episodes or sprints.

(b) Project progress visualisation tools such as PERT and GANTT charts.

(c) Automated regression testing tools.

(d) Source code management tools.

(e) Scrumming.

[4 marks each]

END OF PAPER

9


