COMPUTER SCIENCE TRIPOS Part II – 2015 – Paper 9

2 Computer Systems Modelling (RJG)

Consider a birth death model with birth rates λ_n in states n = 0, 1, ... and death rates μ_n in states n = 1, 2, ...

- (a) State the detailed balance conditions for the equilibrium probability p_n of being in state n, for n = 0, 1, ... and explain how they are derived. [2 marks]
- (b) Using the detailed balance conditions derive an expression p_n and state any condition needed to ensure that the equilibrium distribution exists. [4 marks]
- (c) Now consider the M/M/1 queue with arrival rate λ and service rate μ and explain how it can be modelled as a birth death model. [2 marks]
- (d) For the M/M/1 queue derive the form of p_n , the equilibrium distribution of the number of customers present, and state any conditions needed to ensure the existence of the equilibrium distribution. Derive the mean value of the equilibrium distribution. [4 marks]
- (e) Now consider a M/M/1 model with the modification that customers waiting in the queue are impatient and will only wait for an exponentially distributed amount of time with rate parameter θ before departing the queue without service.
 - (i) Explain how you could modify your birth death model in this situation and write an expression for p_n . [4 marks]
 - (ii) Let α be the probability that a customer receives service and derive an expression for α using Little's law applied to the server. You may leave your expression in terms of the value p_0 . [4 marks]