## COMPUTER SCIENCE TRIPOS Part II – 2015 – Paper 8

## 9 Security II (MGK)

You are working on an encryption device with your new colleague, Mallory Baish, who proposes that you use a pseudo-random generator

$$r_i = h_1(s_i), \qquad s_{i+1} = h_2(s_i)$$

where  $s_0 \in G$  is the random initial state and the other  $s_i \in G$  are subsequent internal states, all invisible to adversaries. The  $h_1, h_2 : G \to G$  are two secure one-way functions.

Adversaries may see any of the past outputs  $r_0, \ldots, r_{n-1}$ . If they can predict from those, with non-negligible probability, the next value  $r_n$ , then the security of your device will be compromised.

- (a) Give a rough estimate for the probability that an adversary can predict  $r_n$ , as a function of n and |G|. Explain your answer. [6 marks]
- (b) Mallory also suggests a specific implementation:

| $h_1(x) = f(u^x \bmod p)$ | p = a 2056-bit prime number                 |
|---------------------------|---------------------------------------------|
| $h_2(x) = f(v^x \bmod p)$ | $u, v = $ two numbers from $\mathbb{Z}_p^*$ |
| $f(x) = x \mod 2^{2048}$  | $G = \mathbb{Z}_{2^{2048}}$                 |

- (i) The constants p, u and v will be known to the adversary. What conditions should they fulfill so that  $h_1$  and  $h_2$  can reasonably be described as one-way functions, and how would you normally generate suitable numbers u and v? [*Hint:* quadratic residues] [4 marks]
- (*ii*) If f were replaced with the identity function, how could an adversary distinguish the  $r_i$  emerging from this pseudo-random generator from a sequence of elements of  $\mathbb{Z}_p^*$  picked uniformly at random? [4 marks]
- (*iii*) After you choose a value for p, Mallory urges you to use two particular values for u and v generated in your absence. You briefly see " $v = u^e \mod p$ " scribbled on a whiteboard. You become suspicious that Mallory is trying to plant a secret backdoor into your pseudo-random generator.

Explain how Mallory could exploit such a backdoor. [6 marks]