COMPUTER SCIENCE TRIPOS Part II - 2015 - Paper 8

8 Quantum Computing (AD)

(a) Consider the following two-qubit quantum state, $|\phi\rangle$.

$$
\frac{\sqrt{2}}{3 \sqrt{3}}|00\rangle-\frac{1}{\sqrt{6}}|01\rangle+\frac{2 i \sqrt{2}}{3 \sqrt{3}}|10\rangle-\frac{5 i}{3 \sqrt{6}}|11\rangle
$$

(i) What are the probabilities of outcomes 0 and 1 if the first qubit of $|\phi\rangle$ is measured?
(ii) What are the probabilities of outcomes 0 and 1 if the second qubit of $|\phi\rangle$ is measured?
(iii) What is the state of the system after the first qubit of $|\phi\rangle$ is measured to be a 0 ?
(iv) What is the state of the system if the second qubit of $|\phi\rangle$ is measured to be a 1 ?
(v) What are the probabilities of outcomes 0 and 1 if the second qubit of the system is measured, after the first qubit of $|\phi\rangle$ has been measured to be 0 ?
(vi) What are the probabilities of outcomes 0 and 1 if the first qubit of the system is measured, after the second qubit of $|\phi\rangle$ has been measured to be 1 ?
(b) The two qubit quantum Fourier transform is given by the following matrix.

$$
F_{2}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

Sketch a circuit for implementing the operator F_{2} using any combination of 1-qubit Hadamard gates; 1-qubit Pauli gates; 2-qubit C-NOT gates; controlled phase shifts and swap gates (the swap gate S is defined by $S|x y\rangle=|y x\rangle$). Briefly explain your circuit.
[8 marks]

