COMPUTER SCIENCE TRIPOS Part II – 2015 – Paper 8

2 Computer Systems Modelling (RJG)

- (a) A Poisson process of rate λ has inter-event times X_1, X_2, \ldots that are independent Exponential random variables with parameter λ .
 - (i) Show that the random variables X_i for i = 1, 2, ... satisfy the *memoryless* property

$$\mathbb{P}(X_i > t + s | X_i > t) = \mathbb{P}(X_i > s)$$

where s and t are any positive real numbers.

[2 marks]

(*ii*) Suppose that T_1, T_2, \ldots, T_n is an observed sequence of *n* consecutive event times. Describe what tests you could conduct of the hypothesis that the observed events arise from a Poisson process of some given rate λ .

[6 marks]

- (b) (i) Describe the M/G/1 queue model explaining the mathematical assumptions made and the required features of the queue. [4 marks]
 - (*ii*) Suppose that the arrival rate for the M/G/1 queue is λ customers per second, that the service rate is μ customers per second and assume that $\rho = \lambda/\mu < 1$. Define the utilization, U, of the server and show that $U = \rho$. [2 marks]
 - (*iii*) A busy period of the M/G/1 queue is a period of time which starts when the server becomes occupied and continues until the server is no longer occupied. An *idle period* is the period of time between consecutive busy periods. Explain how to find the mean length of an idle period. Using your result for the utilization of the server in part (b)(ii), derive an expression for the mean length, τ , of a busy period. [6 marks]