COMPUTER SCIENCE TRIPOS Part IB - 2015 - Paper 6

8 Mathematical Methods for Computer Science (RJG)

(a) Let X be a random variable with finite mean $\mu=\mathbb{E}(X)$ and finite variance $\sigma^{2}=$ $\operatorname{Var}(X)$. State and prove Chebyshev's inequality for the random variable X. You may assume Markov's inequality without proof.
(b) Now suppose that X is a continuous random variable with probability density function $f_{X}(x)$ and finite mean $\mu=\mathbb{E}(X)$ such that

- $f_{X}(x)=0 \quad \forall x \notin[\alpha, \beta]$
- $x f_{X}(x) \leq \gamma \quad \forall x \in[\alpha, \beta]$
where α, β and γ are non-negative real constants with $\alpha<\beta$. Suppose that $\left(A_{i}, B_{i}\right)$ for $i=1,2, \ldots, n$ is a sequence of independent and identically distributed 2-dimensional random variables where A_{i} and B_{i} are independent with marginal distributions $A_{i} \sim U[\alpha, \beta]$ and $B_{i} \sim U[0, \gamma]$ for each $i=$ $1,2, \ldots, n$.
(i) Define random variables I_{i} for $i=1,2, \ldots, n$ such that

$$
I_{i}= \begin{cases}1 & \text { if } B_{i} \leq A_{i} f_{X}\left(A_{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

and set $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{i}$. Show that $\mathbb{E}\left(Z_{n}\right)=\mu /(\gamma(\beta-\alpha))$ and that $\operatorname{Var}\left(Z_{n}\right) \leq \frac{1}{4 n}$.
[5 marks]
(ii) Using Chebyshev's inequality show that Z_{n} converges in probability to the degenerate random variable with value $\mu /(\gamma(\beta-\alpha))$.
(iii) Describe an algorithm to estimate the mean μ of the random variable X. You may assume for the purpose of your algorithm that you have a function that returns random points of the given form $\left(A_{i}, B_{i}\right)$.

