COMPUTER SCIENCE TRIPOS Part IB – 2015 – Paper 6

8 Mathematical Methods for Computer Science (RJG)

- (a) Let X be a random variable with finite mean $\mu = \mathbb{E}(X)$ and finite variance $\sigma^2 = Var(X)$. State and prove Chebyshev's inequality for the random variable X. You may assume Markov's inequality without proof. [5 marks]
- (b) Now suppose that X is a continuous random variable with probability density function $f_X(x)$ and finite mean $\mu = \mathbb{E}(X)$ such that
 - $f_X(x) = 0 \quad \forall x \notin [\alpha, \beta]$
 - $xf_X(x) \le \gamma \quad \forall x \in [\alpha, \beta]$

where α, β and γ are non-negative real constants with $\alpha < \beta$. Suppose that (A_i, B_i) for i = 1, 2, ..., n is a sequence of independent and identically distributed 2-dimensional random variables where A_i and B_i are independent with marginal distributions $A_i \sim U[\alpha, \beta]$ and $B_i \sim U[0, \gamma]$ for each i = 1, 2, ..., n.

(i) Define random variables I_i for i = 1, 2, ..., n such that

$$I_i = \begin{cases} 1 & \text{if } B_i \le A_i f_X(A_i) \\ 0 & \text{otherwise} \end{cases}$$

and set $Z_n = \frac{1}{n} \sum_{i=1}^n I_i$. Show that $\mathbb{E}(Z_n) = \mu/(\gamma(\beta - \alpha))$ and that $\operatorname{Var}(Z_n) \leq \frac{1}{4n}$. [5 marks]

- (*ii*) Using Chebyshev's inequality show that Z_n converges in probability to the degenerate random variable with value $\mu/(\gamma(\beta \alpha))$. [5 marks]
- (*iii*) Describe an algorithm to estimate the mean μ of the random variable X. You may assume for the purpose of your algorithm that you have a function that returns random points of the given form (A_i, B_i) . [5 marks]