COMPUTER SCIENCE TRIPOS Part IB – 2015 – Paper 6

4 Computation Theory (AMP)

- (a) Give inductive definitions of the relations $M \to N$ and $M \twoheadrightarrow N$ of single-step and many-step β -reduction between λ -terms M and N. (You may assume the definition of α -conversion, $M =_{\alpha} N$.) [6 marks]
- (b) Turing's fixed point combinator is the λ -term **A** A where $\mathbf{A} = \lambda x . \lambda y . y(x x y)$. Use it to show that given any λ -term M, there is a λ -term X satisfying $X \to MX$. [2 marks]
- (c) The sequence of λ -terms $\mathbb{N}_0, \mathbb{N}_1, \mathbb{N}_2, \ldots$ is defined by $\mathbb{N}_0 = \lambda x . \lambda f. x$ and $\mathbb{N}_{n+1} = \lambda x . \lambda f. f \mathbb{N}_n$. Say that a function $\mathbf{f} \in \mathbb{N}^k \to \mathbb{N}$ is *Scott definable* if there is a λ -term F satisfying that $F \mathbb{N}_{n_1} \cdots \mathbb{N}_{n_k} \to \mathbb{N}_{\mathbf{f}(n_1,\ldots,n_k)}$ for all $(n_1,\ldots,n_k) \in \mathbb{N}^k$.
 - (i) Show that the successor function , succ(n) = n + 1, is Scott definable. [2 marks]
 - (*ii*) Show that for any λ -terms M and N, $\mathbb{N}_0 M N \twoheadrightarrow M$ and $\mathbb{N}_{n+1} M N \twoheadrightarrow N \mathbb{N}_n$. Deduce that the predecessor function

$$\operatorname{pred}(n) = \begin{cases} 0 & \text{if } n = 0\\ n - 1 & \text{if } n > 0 \end{cases}$$

is Scott definable.

(*iii*) By considering the λ -terms $P_m = A A (\lambda f. \lambda y. y \mathbb{N}_m (\lambda z. S(f z)))$ for a suitable choice of S, or otherwise, prove that the addition function plus(m, n) = m + n is Scott definable. [8 marks]

[2 marks]