COMPUTER SCIENCE TRIPOS Part IB - 2015 - Paper 6

3 Computation Theory (AMP)

(a) What does it mean for a partial function to be register machine computable?
[3 marks]
(b) Give definitions of bijective codings of pairs of numbers $(x, y) \in \mathbb{N}^{2}$ as numbers $\langle x, y\rangle \in \mathbb{N}$; and of finite lists of numbers $\ell \in \operatorname{list} \mathbb{N}$ as numbers $\ulcorner\ell\urcorner \in \mathbb{N}$.
(c) Let T be the subset of \mathbb{N}^{3} consisting of all triples $\left(e,\left\ulcorner\left[x_{1}, x_{2}, \ldots, x_{m}\right]\right\urcorner, t\right)$ such that the computation of the register machine with index e halts after t steps when started with $\mathrm{R}_{0}=0, \mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{m}=x_{m}$ and all other registers zeroed. Define a function $s \in \mathbb{N} \rightarrow \mathbb{N}$ as follows. For each $n \in \mathbb{N}, s(n) \in \mathbb{N}$ is the maximum of the finite set of numbers $\{t \mid \exists e, x \in \mathbb{N}$. $\langle e, x\rangle \leq n \wedge(e, x, t) \in T\}$.

Prove that for all recursive functions $r \in \mathbb{N} \rightarrow \mathbb{N}$, there exists some $n \in \mathbb{N}$ with $r(n)<s(n)$. Any standard results about register machines and about recursive functions that you use should be clearly stated, but need not be proved.
[14 marks]

