
10

COMPUTER SCIENCE TRIPOS Part IB – 2015 – Paper 6

Semantics of Programming Languages (PMS)

Consider the following syntax:

Booleans b ∈ B = {true, false}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Variables x ∈ X = {x, y, ...}
Expressions e ::= b | n | x | fn x→ e | e1 e2 | print e | skip
(considered up to alpha equivalence, with x binding in e in fn x→ e)

The set of free variables of an expression fv(e) are defined in the normal way as
follows.

fv(b) = {}
fv(n) = {}
fv(x) = {x}
fv(fn y → e) = fv(e)− {y}
fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(print e) = fv(e)
fv(skip) = {}

(a) Define capture-avoiding substitution {e/x}e′. [3 marks]

(b) Define a small-step right-to-left call-by-value operational semantics for this
syntax. Your semantics should be expressed as a relation

e
L−→ e′

where the label L is either n (for a print of that integer) or τ (for an internal
transition). [5 marks]

(c) Explain how a call-by-name semantics would differ, giving any changes required
to the rules and giving an example expression that has different output in the
two semantics (you should give its transitions in each but need not give their
derivations). [3 marks]

(d) We are normally interested in closed programs (with no free variables). Prove,
with respect to your call-by-value semantics of part (b), that if e is closed and

e
L−→ e′ then e′ is closed. You can omit the cases for print. [9 marks]

1

