COMPUTER SCIENCE TRIPOS Part IB - 2015 - Paper 4

6 Databases (TGG)

We assume that for each base table R in a relational database we have two update operations : insert (R, t) which inserts tuple t into table R if t does not violate any of the constraints declared for R (fails otherwise), and delete (R, p) which deletes all records in R satisfying predicate p (and fails if this would violate referential integrity constraints). Update operations are combined in programs to define transactions with ACID guarantees.

Suppose that we have defined a view $V=Q\left(R_{1}, R_{2}, \ldots, R_{n}\right)$, where the R_{i} indicate the base tables used in query Q. The designers of a new database system want to allow users to update directly such a view. That is, if we have an update of the form $U=\operatorname{insert}(V, t)$ or $U=\operatorname{delete}(V, p)$, then the database system must automatically generate a transaction T_{U} over the tables R_{i} such that for any database instance $D B$ this diagram commutes:

In other words, applying the update U directly to a view (as if it were a base table) produces the same result as applying T_{U} to the database and then evaluating the view query.

A major problem with this approach is that there may be multiple distinct solutions for T_{U}. We explore this now.
(a) Explain the difference between a database query and a database view.
(b) Let $V=\pi_{X}(R)$ be a view for some base table R and some subset X of R 's attributes Y. How could this be translated into the desired transaction T_{U} ? Discuss any problems with ambiguity that may arise.
(c) Let $V=\sigma_{q}(R)$ be a view for some base table R and predicate q. How could this be translated into the desired transaction T_{U} ? Discuss any problems with ambiguity that may arise.
(d) In the design of a database schema it was discovered that a relation R violated Boyce-Codd normal form, and so it was replaced by two base tables R_{1} and R_{2} resulting from the standard decomposition process. Suppose users attempt to reconstruct the original relation using the view $V=R_{1} \bowtie R_{2}$. Discuss the problems that might arise now in the construction of transaction T_{U} for updates to V.
[8 marks]

