## COMPUTER SCIENCE TRIPOS Part IB – 2015 – Paper 4

## 4 Computer Graphics and Image Processing (PR)

Consider a curve defined by polynomial parametric segments  $\mathbf{P}_i(s)$  for i = 1, 2, ..., m that interpolates a set of points  $\{\mathbf{A}_i\}_{0 \le i \le m}$  in three dimensions.

- (a) What is meant by  $C_k$  continuity at the junction of two segments? [3 marks]
- (b) What is the least order of the polynomials that must be used to achieve  $C_k$  continuity at the junctions? [2 marks]
- (c) Derive the Overhauser formulation for a set of weighting functions  $w_{-2}(s)$ ,  $w_{-1}(s)$ ,  $w_0(s)$  and  $w_1(s)$  so that the cubic curve segment joining  $\mathbf{A}_{i-1}$  and  $\mathbf{A}_i$ can be expressed as  $\mathbf{P}_i(s) = w_{-2}(s)\mathbf{A}_{i-2} + w_{-1}(s)\mathbf{A}_{i-1} + w_0(s)\mathbf{A}_i + w_1(s)\mathbf{A}_{i+1}$ for 1 < i < m. [10 marks]
- (d) Extend this formulation to give a set of parametric patches  $\mathbf{P}_{i,j}(s,t)$  for 1 < i < m and 1 < j < n interpolating a surface through an array of points  $\{\mathbf{A}_{i,j}\}_{0 \le i \le m, 0 \le j \le n}$ . [5 marks]