COMPUTER SCIENCE TRIPOS Part IB - 2015 - Paper 3

7 Prolog (ACR)

This question explores how we might use Prolog to match Regular Expressions.
We represent the sequence to be matched in Prolog using a list of atoms. For example, aaba would be represented as the list [a, a, b, a, end] using the atom end to encode the end of the string explicitly.

A simple scheme for writing Regular Expressions uses a single character as itself and uses the plus symbol $(+)$ to indicate that there should be one or more instances of the previous character. In this question we consider the Regular Expression $\mathrm{a}^{+}{ }^{+}{ }^{+} \mathrm{a}$ which means one or more occurrences of a, followed by one or more occurrences of b, followed by a single occurrence of a.
(a) Draw a state machine which is capable of matching the Regular Expression $a^{+} b^{+} a$. Clearly indicate the start and finish states.
(b) Define a predicate $t(A, B, C)$ which encodes the transitions of your state machine. $t(A, B, C)$ should be true if there is a transition from state A to state B when we see a character C. Indicate which of your definitions are facts and which are rules.
(c) Predicates for testing a solution do not always work when generating solutions. Demonstrate this by writing a Prolog predicate matches(L) which tests if L represents a string which matches the Regular Expression $\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{a}$. [5 marks]
(d) Why is your predicate matches (L) not a good solution for generating strings matching the Regular Expression $\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{a}$? Describe a specific execution path in which a problem can occur.
(e) Describe a better strategy for generating strings matching the Regular Expression $\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{a}$ and provide an implementation. Clearly explain the approach you are using and why it is a sensible choice.

