COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

9 Discrete Mathematics (MPF)

(a) Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers a, b, c,

$$gcd(a,c) = 1 \implies (gcd(a \cdot b,c) | b \land gcd(a \cdot b,c) = gcd(b,c))$$

You may use any other standard results provided that you state them clearly. [6 marks]

(b) Prove that for all disjoint sets X and Y (that is, such that $X \cap Y = \emptyset$),

$$\mathcal{P}(X \cup Y) \cong \mathcal{P}(X) \times \mathcal{P}(Y)$$

You may use any standard results provided that you state them clearly. [6 marks]

(c) (i) For an alphabet Σ and a language $L \subseteq \Sigma^*$, define the language $F(L) \subseteq \Sigma^*$ as

$$F(L) \stackrel{\mathrm{def}}{=} \{ awa \in \Sigma^* \mid a \in \Sigma \land w \in L \}$$

Prove that for all $L_1, L_2 \subseteq \Sigma^*$, $F(L_1 \cup L_2) = F(L_1) \cup F(L_2)$. [2 marks]

(*ii*) Let Pal $\subseteq \Sigma^*$ be the language of palindromes (i.e. strings that read the same backwards as forwards) defined as Pal $\stackrel{\text{def}}{=} \{ w \in \Sigma^* \mid \operatorname{rev}(w) = w \}$ where rev is the unique function $\Sigma^* \to \Sigma^*$ such that $\operatorname{rev}(\varepsilon) = \varepsilon$, $\operatorname{rev}(a) = a$ for all $a \in \Sigma$, and $\operatorname{rev}(w_1 w_2) = \operatorname{rev}(w_2) \operatorname{rev}(w_1)$ for all $w_1, w_2 \in \Sigma^*$.

Prove that for all
$$L \subseteq \Sigma^*$$
, $L \subseteq \text{Pal} \implies F(L) \subseteq \text{Pal}$. [2 marks]

(*iii*) For $k \in \mathbb{N}$, let $\operatorname{Pal}_k \subseteq \operatorname{Pal}$ be the language of palindromes of length k; that is, $\operatorname{Pal}_k \stackrel{\text{def}}{=} \{ w \in \operatorname{Pal} \mid |w| = k \}.$

Recalling that $F^0(X) \stackrel{\text{def}}{=} X$ and, for $k \in \mathbb{N}$, $F^{k+1}(X) \stackrel{\text{def}}{=} F(F^k(X))$, prove that:

- (A) for all $n \in \mathbb{N}$, $F^n(\operatorname{Pal}_0) = \operatorname{Pal}_{2n}$, [2 marks]
- (B) for all $n \in \mathbb{N}$, $F^n(\operatorname{Pal}_1) = \operatorname{Pal}_{2n+1}$. [2 marks]

It follows that $\bigcup_{n \in \mathbb{N}} F^n(\operatorname{Pal}_0 \cup \operatorname{Pal}_1) = \operatorname{Pal}$, though you are not required to prove this.