COMPUTER SCIENCE TRIPOS Part IA - 2015 - Paper 2

9 Discrete Mathematics (MPF)

(a) Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers a, b, c,

$$
\operatorname{gcd}(a, c)=1 \Longrightarrow(\operatorname{gcd}(a \cdot b, c) \mid b \wedge \operatorname{gcd}(a \cdot b, c)=\operatorname{gcd}(b, c))
$$

You may use any other standard results provided that you state them clearly.
(b) Prove that for all disjoint sets X and Y (that is, such that $X \cap Y=\emptyset$),

$$
\mathcal{P}(X \cup Y) \cong \mathcal{P}(X) \times \mathcal{P}(Y)
$$

You may use any standard results provided that you state them clearly.
(c) (i) For an alphabet Σ and a language $L \subseteq \Sigma^{*}$, define the language $F(L) \subseteq \Sigma^{*}$ as

$$
F(L) \stackrel{\text { def }}{=}\left\{a w a \in \Sigma^{*} \mid a \in \Sigma \wedge w \in L\right\}
$$

Prove that for all $L_{1}, L_{2} \subseteq \Sigma^{*}, F\left(L_{1} \cup L_{2}\right)=F\left(L_{1}\right) \cup F\left(L_{2}\right) . \quad$ [2 marks]
(ii) Let $\mathrm{Pal} \subseteq \Sigma^{*}$ be the language of palindromes (i.e. strings that read the same backwards as forwards) defined as Pal $\stackrel{\text { def }}{=}\left\{w \in \Sigma^{*} \mid \operatorname{rev}(w)=w\right\}$ where rev is the unique function $\Sigma^{*} \rightarrow \Sigma^{*} \operatorname{such}$ that $\operatorname{rev}(\varepsilon)=\varepsilon, \operatorname{rev}(a)=a$ for all $a \in \Sigma$, and $\operatorname{rev}\left(w_{1} w_{2}\right)=\operatorname{rev}\left(w_{2}\right) \operatorname{rev}\left(w_{1}\right)$ for all $w_{1}, w_{2} \in \Sigma^{*}$.

Prove that for all $L \subseteq \Sigma^{*}, L \subseteq \mathrm{Pal} \Longrightarrow F(L) \subseteq$ Pal.
(iii) For $k \in \mathbb{N}$, let $\mathrm{Pal}_{k} \subseteq \mathrm{Pal}$ be the language of palindromes of length k; that is, $\operatorname{Pal}_{k} \stackrel{\text { def }}{=}\{w \in \operatorname{Pal}| | w \mid=k\}$.

Recalling that $F^{0}(X) \stackrel{\text { def }}{=} X$ and, for $k \in \mathbb{N}, F^{k+1}(X) \stackrel{\text { def }}{=} F\left(F^{k}(X)\right)$, prove that:
(A) for all $n \in \mathbb{N}, F^{n}\left(\mathrm{Pal}_{0}\right)=\mathrm{Pal}_{2 n}$,
(B) for all $n \in \mathbb{N}, F^{n}\left(\mathrm{Pal}_{1}\right)=\mathrm{Pal}_{2 n+1}$.

It follows that $\bigcup_{n \in \mathbb{N}} F^{n}\left(\mathrm{Pal}_{0} \cup \mathrm{Pal}_{1}\right)=$ Pal, though you are not required to prove this.

