COMPUTER SCIENCE TRIPOS Part IA - 2015 - Paper 2

8 Discrete Mathematics (MPF)

(a) Prove that, for all natural numbers n,

$$
n^{13} \equiv n(\bmod 1365)
$$

You may use any standard results provided that you state them clearly.
(b) For n ranging over the natural numbers \mathbb{N}, let
$\operatorname{Even}(n)$ be the predicate $\exists k \in \mathbb{N}$. $n=2 \cdot k$
and let
$\operatorname{Odd}(n)$ be the predicate $\exists l \in \mathbb{N}$. $n=2 \cdot l+1$
Prove that

$$
\forall n \in \mathbb{N} . \operatorname{Even}(n) \vee \operatorname{Odd}(n)
$$

by the Principle of Induction.
(c) Let $F: A \longrightarrow B$ be a relation, from a set A to a set B.
(i) Define what it means for F to be a (total) function.
(ii) Prove that F is a function if, and only if, there exists a relation $G: B \longrightarrow A$ such that $\operatorname{id}_{A} \subseteq G \circ F$ and $F \circ G \subseteq \operatorname{id}_{B}$.

