COMPUTER SCIENCE TRIPOS Part IA - 2015 - Paper 2

7 Discrete Mathematics (MPF)

(a) Let $\mathbb{N}_{\geq 2} \stackrel{\text { def }}{=}\{k \in \mathbb{N} \mid k \geq 2\}$.

Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers m and n,

$$
\operatorname{gcd}(m, n)=1 \Longleftrightarrow \neg\left(\exists k \in \mathbb{N}_{\geq 2} . k|m \wedge k| n\right)
$$

You may use any other standard results provided that you state them clearly.
(b) Recall that, for $i, j \in \mathbb{N}$,

$$
\binom{i}{j} \stackrel{\text { def }}{=} \begin{cases}0 & \text { if } i<j \\ \frac{i!}{j!(i-j)!} & , \text { if } i \geq j\end{cases}
$$

(i) Show that for all $m<l$ in \mathbb{N},

$$
\binom{l}{m+1}+\binom{l}{m}=\binom{l+1}{m+1}
$$

(ii) Prove that

$$
\forall n \in \mathbb{N} . \forall m \in \mathbb{N} .0 \leq m \leq n \Longrightarrow \sum_{k=0}^{n}\binom{k}{m}=\binom{n+1}{m+1}
$$

(c) Let U be a set and let $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathcal{P}(U)$ be a function such that for all $i, i^{\prime}, j, j^{\prime} \in \mathbb{N}$, if $i \leq i^{\prime}$ and $j \leq j^{\prime}$ then $F(i, j) \subseteq F\left(i^{\prime}, j^{\prime}\right)$ in $\mathcal{P}(U)$.

Prove that

$$
\bigcup_{i \in \mathbb{N}}\left(\bigcup_{j \in \mathbb{N}} F(i, j)\right)=\bigcup_{k \in \mathbb{N}} F(k, k)
$$

(Recall that $x \in \bigcup_{l \in L} X_{l} \Longleftrightarrow \exists l \in L . x \in X_{l}$.)

