COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

10 Discrete Mathematics (AMP)

- (a) Give a deterministic finite automaton (DFA) with input alphabet $\{a\}$ accepting the language $\{a^n \mid n \in U\}$, where $U = \{1, 2\} \cup \{n \ge 3 \mid n \equiv 4 \pmod{6} \lor n \equiv 7 \pmod{6}\}$. [3 marks]
- (b) What does it mean for a language over an alphabet Σ to be regular? [2 marks]
- (c) A subset U of the set $\mathbb{N} = \{0, 1, 2, ...\}$ of natural numbers is called *ultimately* periodic if there exist numbers $N \ge 0$ and p > 0 such that for all $n \ge N$, $n \in U$ if and only if $n + p \in U$.
 - (i) Explain why every *finite* set of numbers is ultimately periodic according to the above definition. [2 marks]
 - (*ii*) Let L be a regular language over the alphabet $\{a\}$. By considering the shape of paths in the transition graph of any DFA with input alphabet $\{a\}$, or otherwise, show that $\{n \in \mathbb{N} \mid a^n \in L\}$ is an ultimately periodic set of numbers. [8 marks]
 - (*iii*) Conversely, show that if $U \subseteq \mathbb{N}$ is ultimately periodic, then $\{a^n \mid n \in U\}$ is a regular language. [5 marks]