## COMPUTER SCIENCE TRIPOS Part IA - 2015 - Paper 2

## 10 Discrete Mathematics (AMP)

(a) Give a deterministic finite automaton (DFA) with input alphabet $\{a\}$ accepting the language $\left\{a^{n} \mid n \in U\right\}$, where $U=\{1,2\} \cup\{n \geq 3 \mid n \equiv 4(\bmod 6) \vee n \equiv 7$ $(\bmod 6)\}$.
(b) What does it mean for a language over an alphabet $\Sigma$ to be regular?
(c) A subset $U$ of the set $\mathbb{N}=\{0,1,2, \ldots\}$ of natural numbers is called ultimately periodic if there exist numbers $N \geq 0$ and $p>0$ such that for all $n \geq N, n \in U$ if and only if $n+p \in U$.
(i) Explain why every finite set of numbers is ultimately periodic according to the above definition.
[2 marks]
(ii) Let $L$ be a regular language over the alphabet $\{a\}$. By considering the shape of paths in the transition graph of any DFA with input alphabet $\{a\}$, or otherwise, show that $\left\{n \in \mathbb{N} \mid a^{n} \in L\right\}$ is an ultimately periodic set of numbers.
[8 marks]
(iii) Conversely, show that if $U \subseteq \mathbb{N}$ is ultimately periodic, then $\left\{a^{n} \mid n \in U\right\}$ is a regular language.

