COMPUTER SCIENCE TRIPOS Part II – 2014 – Paper 9

5 Digital Signal Processing (MGK)

A discrete sequence $\{x_n\}$ can be converted into a continuous representation

$$\hat{x}(t) = t_{s} \cdot \sum_{n=-\infty}^{\infty} \delta(t - n \cdot t_{s}) \cdot x_{n},$$

where $t_{\rm s}$ is the sampling period.

- (a) State two characteristic properties of Dirac's δ function. [2 marks]
- (b) Describe briefly how this representation helps to explain aliasing. [4 marks]
- (c) Define three functions h(t), such that convolving $\hat{x}(t)$ with h(t) results in
 - (i) the output of an idealized analog-to-digital converter that holds the output voltage of each sample x_n for the time interval from $t = n \cdot t_s$ until the next sample x_{n+1} arrives at time $t = (n+1) \cdot t_s$; [4 marks]
 - (*ii*) linear interpolation of $\{x_n\}$; [4 marks]
 - (*iii*) reconstruction of a signal x(t) that was sampled as $x_n = x(n \cdot t_s)$, assuming that the Fourier transform of x(t) is zero at any frequency f with $|f|^{-1} \leq t_s$ or $|f|^{-1} \geq 2t_s$. [6 marks]