COMPUTER SCIENCE TRIPOS Part II – 2014 – Paper 8

8 Temporal Logic and Model Checking (MJCG)

From Wikipedia: "Tic-tac-toe (or Noughts and Crosses, Xs and Os) is a paper-andpencil game for two players, X and O, who take turns marking the spaces in a 3×3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game." For example, X is the first player in both example games shown below; the first game is won by the X, the second is drawn.

X - - - - -	0 X - - - - - -	0 X - - - - - - X	0 X - - - 0 - - - X	0 X - - - 0 - - - X X	0 X - - - 0 0 - - - X X	0 X - - - 0 0 - - - X X X		
- - - X - - -	- - - - X - - -	- - - X - - - X	0 0 - - - X - - - X	0 X 0 - - - X - - - X	0 X 0 - - - X - - - 0 X	0 X 0 - - - X X - - - 0 X	0 X 0 - - - X X 0 - - - 0 X	0 X 0 - - - X X 0 - - - X 0 X

(a) This part of the question asks you to define a Kripke structure $M = (S, S_0, R, L)$ to model Tic-tac-toe. Assume the set AP consists of atomic propositions Start(p) and Has(i, v). Start(p) means player p starts, where $p \in \{0, 1\}$ represents a player: 0, 1 represent 0, X, respectively. Has(i, v) means space i contains value v, where $i \in \{1, \ldots, 9\}$ names a grid space and $v \in \{0, 1, 2\}$ represents the state of a space: 0, 1, 2 represent 0, X, empty-space, respectively.

(i) Specify a suitable representation S of states. [2 marks]

- (*ii*) Specify the set of initial states S_0 . [2 marks]
- (iii) Specify a transition relation R to model the moves in the game. [6 marks]
- (*iv*) Specify a labelling function L to define which atomic propositions hold in each state. [2 marks]
- (b) In a suitable temporal logic, which you should name, devise and explain a formula ψ such that $M \models \psi$ if and only if the first player can always win or draw, no matter how the second player plays. [8 marks]