
11

COMPUTER SCIENCE TRIPOS Part II – 2014 – Paper 7

Optimising Compilers (AM)

(a) Explain the ideas behind available expression analysis. Your explanation should
include data-flow equations, an informal argument as to why these correctly
capture a semantic notion of availability, any issues with decidability and an
algorithm to solve the data-flow equations. It is sufficient to consider, as
candidate available expressions, those expressions of the form v ⊕ v′ where ⊕ is
a binary operation and v and v′ are variables or constants. [6 marks]

(b) Show how the result of available expression analysis can be used to perform
common sub-expression elimination. You need not give an algorithm, but explain
the steps in the optimisation carefully. [4 marks]

(c) Assume that your intermediate code is represented by three-address instructions
stored within basic blocks, and with a fresh temporary used whenever a
temporary variable is used to hold intermediate results of a larger expression.
Explain how your algorithm deals with optimising the program fragment

u = f(a+b*c, a+b*c);

v[a+b*c] = u;

where a is a global variable which may be updated by f, and b and c are local
variables. [5 marks]

(d) Explain carefully how your common sub-expression elimination algorithm reacts
to program fragment:

do { x += b*c; ... } while (...);

and also to program fragment:

z = b*c; do { x += b*c; ... } while (...);

commenting on any differences and on any similarity to lifting a loop-invariant
expression out from a loop. In both cases assume neither b nor c is modified
anywhere in the loop. [5 marks]

1


