## COMPUTER SCIENCE TRIPOS Part II - 2014 - Paper 7

## 1 Advanced Graphics (NAD)

(a) Assuming that it is mapped to a square with texture co-ordinates from $(0,0)$ to $(1,1)$, sketch a picture of the procedural texture map generated by the following Java code. Use textual annotations to indicate the colours of the various parts of the picture.

```
Color BLUE = ...; Color GREEN = ...; Color WHITE = ...;
Color parametricTexture(double tu, double tv) {
    double r1 = 2 * Math.sqrt( (tu - 0.25) * (tu - 0.25)
            +(tv - 0.5) * (tv - 0.5) );
    double r2 = 2 * Math.sqrt( (tu - 0.75) * (tu - 0.75)
                                    + (tv - 0.5) * (tv - 0.5) );
    double f = f(r1) + f(r2);
    return (f > 0.45 && f < 0.55) ? WHITE :
                        GREEN.times(f).plus(BLUE.times(1 - f));
}
private double f(double r) {
    if (0 <= r && r < 0.333) { return 1 - 3*r*r; }
    else if (0.333 <= r && r < 1) { return 1.5*(1-r)*(1-r); }
    else { return 0; }
}
```

(b) Write brief notes that explain the following.
(i) Explain Perlin Noise, including how it differs from white noise. [3 marks]
(ii) Explain Barycentric Co-ordinates, including how they are calculated. Diagrams are encouraged.
(c) Given a ray $R(t)=O+D t$ and a unit sphere $S$, initially centred on the origin and subsequently transformed by affine matrix $M$, where $M$ represents the transformation of the sphere from local to world coordinates:
(i) state the centre of the sphere in local co-ordinates and in world co-ordinates;
(ii) give an expression in terms of $t$ for the local co-ordinates of the intersections between $R$ and $S$;
(iii) give an expression for the world co-ordinates of the same intersections; and
(iv) give an expression for the world co-ordinates of the normal at those intersections.
[7 marks]

