COMPUTER SCIENCE TRIPOS Part Ib - 2014 - Paper 6

10 Semantics of Programming Languages (PMS)

Consider the language L below, with call-by-value functions, ML-style references, and types nat ${ }_{+}$and real ${ }_{+}$of positive natural and positive real numbers. L includes a primitive test for primality, prime (e), and a square-root function, sqrt (e); these are defined only for positive-natural and positive-real values respectively.
$T::=$ bool \mid nat $_{+}\left|\operatorname{real}_{+}\right| T \rightarrow T^{\prime} \mid T$ ref
$e::=x|n| r|\mathbf{f n} x: T \Rightarrow e| e e^{\prime}|\operatorname{ref} e|!e\left|e:=e^{\prime}\right| \operatorname{prime}(e) \mid \operatorname{sqrt}(e)$
Here x ranges over a set X of variables and n and r range over $\mathbb{N}_{>0}$ and $\mathbb{R}_{>0}$ respectively. Let Γ range over finite partial functions from X to types T.
(a) Give typing rules defining $\Gamma \vdash e: T$ for prime (e) and $\mathbf{s q r t}(e)$.
[1 mark]
(b) There is an obvious runtime coercion from elements of nat ${ }_{+}$to elements of real $_{+}$. To let programmers exploit that conveniently, we would like to define a type system for L that includes a subtype relation $T_{1}<: T_{2}$ with nat ${ }_{+}<$: real ${ }_{+}$. The type system should prevent all run-time errors.
(i) Give the other rules defining $T_{1}<: T_{2}$ and the subsumption rule to use that relation in $\Gamma \vdash e: T$.
(ii) Give the 6 (standard) typing rules defining $\Gamma \vdash e: T$ for functions and references.
[3 marks]
(iii) With reference to your subtype rule for function types, explain covariance and contravariance of subtyping. Give examples in L showing that your rule is the only reasonable choice.
(iv) Similarly, justify your rule for reference types.
(c) To implement L, we want to translate it during typechecking to another typed language L^{\prime} which makes that coercion explicit where required, as a new expression form real_of_nat (e), and which does not have subtyping.
(i) Give the L' typing rule for real_of_nat (e) and indicate any other changes required to your type rules for L .
[1 mark]
(ii) Define an inductive relation $T<: T^{\prime} \leadsto e$ which for any $T<: T^{\prime}$ constructs a coercion $e: T \rightarrow T^{\prime}$.
[4 marks]
(iii) Define an inductive relation $\Gamma \vdash e \leadsto e^{\prime}: T$ where e is an L expression and e^{\prime} is an L^{\prime} expression which is like e but with coercions introduced where needed, such that $\Gamma \vdash e: T$ iff $\exists e^{\prime} . \Gamma \vdash e \leadsto e^{\prime}: T$. You should explain but need not prove that, and you can omit the rules for references. [3 marks]

