
10

COMPUTER SCIENCE TRIPOS Part IB – 2014 – Paper 6

Semantics of Programming Languages (PMS)

Consider the language L below, with call-by-value functions, ML-style references, and
types nat+ and real+ of positive natural and positive real numbers. L includes a
primitive test for primality, prime (e), and a square-root function, sqrt (e); these
are defined only for positive-natural and positive-real values respectively.

T ::= bool | nat+ | real+ | T → T ′ | T ref

e ::= x | n | r | fn x : T ⇒ e | e e ′ | ref e | !e | e := e ′ | prime (e) | sqrt (e)

Here x ranges over a set X of variables and n and r range over N>0 and R>0

respectively. Let Γ range over finite partial functions from X to types T .

(a) Give typing rules defining Γ ` e : T for prime (e) and sqrt (e). [1 mark]

(b) There is an obvious runtime coercion from elements of nat+ to elements of
real+. To let programmers exploit that conveniently, we would like to define a
type system for L that includes a subtype relation T1 <: T2 with nat+ <: real+.
The type system should prevent all run-time errors.

(i) Give the other rules defining T1 <: T2 and the subsumption rule to use
that relation in Γ ` e : T . [4 marks]

(ii) Give the 6 (standard) typing rules defining Γ ` e : T for functions and
references. [3 marks]

(iii) With reference to your subtype rule for function types, explain covariance
and contravariance of subtyping. Give examples in L showing that your
rule is the only reasonable choice. [2 marks]

(iv) Similarly, justify your rule for reference types. [2 marks]

(c) To implement L, we want to translate it during typechecking to another typed
language L′ which makes that coercion explicit where required, as a new
expression form real of nat(e), and which does not have subtyping.

(i) Give the L′ typing rule for real of nat(e) and indicate any other changes
required to your type rules for L. [1 mark]

(ii) Define an inductive relation T <: T ′ ; e which for any T <: T ′ constructs
a coercion e : T → T ′. [4 marks]

(iii) Define an inductive relation Γ ` e ; e ′ : T where e is an L expression and
e ′ is an L′ expression which is like e but with coercions introduced where
needed, such that Γ ` e : T iff ∃e ′. Γ ` e ; e ′ : T . You should explain but
need not prove that, and you can omit the rules for references. [3 marks]

1

