COMPUTER SCIENCE TRIPOS Part IB - 2014 - Paper 6

10 Semantics of Programming Languages (PMS)

Consider the language L below, with call-by-value functions, ML-style references, and types \mathbf{nat}_+ and \mathbf{real}_+ of positive natural and positive real numbers. L includes a primitive test for primality, $\mathbf{prime}(e)$, and a square-root function, $\mathbf{sqrt}(e)$; these are defined only for positive-natural and positive-real values respectively.

 $T ::= \mathbf{bool} \mid \mathbf{nat}_+ \mid \mathbf{real}_+ \mid T \to T' \mid T \mathbf{ref}$ $e ::= x \mid n \mid r \mid \mathbf{fn} x : T \Rightarrow e \mid e e' \mid \mathbf{ref} e \mid !e \mid e := e' \mid \mathbf{prime}(e) \mid \mathbf{sqrt}(e)$

Here x ranges over a set X of variables and n and r range over $\mathbb{N}_{>0}$ and $\mathbb{R}_{>0}$ respectively. Let Γ range over finite partial functions from X to types T.

- (a) Give typing rules defining $\Gamma \vdash e : T$ for **prime** (e) and **sqrt** (e). [1 mark]
- (b) There is an obvious runtime coercion from elements of \mathbf{nat}_+ to elements of \mathbf{real}_+ . To let programmers exploit that conveniently, we would like to define a type system for L that includes a subtype relation $T_1 <: T_2$ with $\mathbf{nat}_+ <: \mathbf{real}_+$. The type system should prevent all run-time errors.
 - (i) Give the other rules defining $T_1 <: T_2$ and the subsumption rule to use that relation in $\Gamma \vdash e : T$. [4 marks]
 - (*ii*) Give the 6 (standard) typing rules defining $\Gamma \vdash e : T$ for functions and references. [3 marks]
 - (*iii*) With reference to your subtype rule for function types, explain covariance and contravariance of subtyping. Give examples in L showing that your rule is the only reasonable choice. [2 marks]
 - (*iv*) Similarly, justify your rule for reference types. [2 marks]
- (c) To implement L, we want to translate it during typechecking to another typed language L' which makes that coercion explicit where required, as a new expression form real_of_nat(e), and which does not have subtyping.
 - (i) Give the L' typing rule for real_of_nat(e) and indicate any other changes required to your type rules for L.
 [1 mark]
 - (*ii*) Define an inductive relation $T <: T' \rightsquigarrow e$ which for any T <: T' constructs a coercion $e: T \rightarrow T'$. [4 marks]
 - (*iii*) Define an inductive relation $\Gamma \vdash e \rightsquigarrow e' : T$ where e is an L expression and e' is an L' expression which is like e but with coercions introduced where needed, such that $\Gamma \vdash e : T$ iff $\exists e'. \Gamma \vdash e \rightsquigarrow e' : T$. You should explain but need not prove that, and you can omit the rules for references. [3 marks]